scispace - formally typeset
Search or ask a question
Topic

LTE Advanced

About: LTE Advanced is a research topic. Over the lifetime, 4055 publications have been published within this topic receiving 74262 citations. The topic is also known as: Long-Term Evolution Advanced & LTE-A.


Papers
More filters
Journal ArticleDOI
TL;DR: This article recommends the use of enhanced interference coordination, or eICIC, to mitigate cross-tier interference and ensure sufficient offload of users from macro to small cells in LTE-Advanced heterogeneous network scenarios with macro and small cells.
Abstract: In this article we present two promising practical use cases for simple multicell cooperation for LTE-Advanced heterogeneous network scenarios with macro and small cells. For co-channel deployment cases, we recommend the use of enhanced interference coordination, or eICIC, to mitigate cross-tier interference and ensure sufficient offload of users from macro to small cells. It is shown how the eICIC benefit is maximized by using a distributed inter-base station control framework for dynamic adjustment of essential parameters. Second, for scenarios where macro and small cells are deployed at different carriers an efficient use of the fragmented spectrum can be achieved by using collaborative inter-site carrier aggregation. In addition to distributed coordination/collaboration between base station nodes, the importance of explicit terminal assistance is highlighted. Comprehensive system-level simulation results illustrate the performance benefits of the presented techniques.

113 citations

Patent
Wanshi Chen1, Peter Gaal1, Aamod Khandekar1, Juan Montojo1, Naga Bhushan1 
08 Oct 2010
TL;DR: In this paper, the downlink control information (DCI) is configured to indicate an allocation of uplink resources with a clustered uplink resource allocation protocol or a contiguous uplink Resource Allocation Protocol (LRAP).
Abstract: Methods, systems, apparatus and computer program products are provided to receive downlink control information (DCI) in a downlink control channel, where the downlink control information configured to indicate an allocation of uplink resources with a clustered uplink resource allocation protocol or a contiguous uplink resource allocation protocol, to detect which of the clustered uplink resource allocation protocol and the contiguous uplink resource allocation protocol is indicated and to allocate the uplink resources based on the indicated uplink resource allocation protocol.

112 citations

Posted Content
TL;DR: This article proposes a novel collision resolution random access model for massive MTC over LTE/LTE-A that basically resolves the preamble collisions instead of avoidance and targets the management of massive and bursty access attempts.
Abstract: Massive Machine-Type Communications (MTC) over cellular networks is expected to be an integral part of wireless "Smart City" applications. The Long Term Evolution (LTE)/LTE-Advanced (LTE-A) technology is a major candidate for provisioning of MTC applications. However, due to the diverse characteristics of payload size, transmission periodicity, power efficiency, and quality of service (QoS) requirement, MTC poses huge challenges to LTE/LTE-A technologies. In particular, efficient management of massive random access is one of the most critical challenges. In case of massive random access attempts, the probability of preamble collision drastically increases, thus the performance of LTE/LTE-A random access degrades sharply. In this context, this article reviews the current state-of-the-art proposals to control massive random access of MTC devices in LTE/LTE-A networks. The proposals are compared in terms of five major metrics, namely, access delay, access success rate, power efficiency, QoS guarantee, and the effect on Human-Type Communications (HTC). To this end, we propose a novel collision resolution random access model for massive MTC over LTE/LTE-A. Our proposed model basically resolves the preamble collisions instead of avoidance, and targets to manage massive and bursty access attempts. Simulations of our proposed model show huge improvements in random access success rate compared to the standard slotted-Aloha-based models. The new model can also coexist with existing LTE/LTE-A Medium Access Control (MAC) protocol, and ensure high reliability and time-efficient network access.

111 citations

Journal ArticleDOI
TL;DR: An analytical model is presented to investigate the performance of the EAB algorithm on the RACHs in LTE-A networks and the optimal values of paging cycle and repetition period of system information block type 14 (SIB14) can be obtained from the analytical model subject to a target quality-of-service (QoS) constraint.
Abstract: Simultaneous channel accesses from mass machine-type communications (MTC) devices may congest the random-access channels (RACHs) of LTE-A networks. Currently, 3GPP selects extended access barring (EAB) mechanism as the baseline solution to relieve the congestion of RACHs by barring low-priority devices. Different settings of EAB parameters may re-shape the arrival process of MTC traffic and thus, lead to unpredictable performance. This paper presents an analytical model to investigate the performance of the EAB algorithm on the RACHs in LTE-A networks. Computer simulations were conducted to verify the accuracy of the analysis. The optimal values of paging cycle and repetition period of system information block type 14 (SIB14) can then be obtained from the analytical model subject to a target quality-of-service (QoS) constraint.

108 citations

Journal ArticleDOI
TL;DR: The measurements reveal that LTE can provide coverage for 99 percent of the outdoor and road users, but the LTE-M or NarrowBand-IoT upgrades are required in combination with other measures to allow for additional penetration losses, such as those experienced in underground parking lots.
Abstract: Long Term Evolution, the fourth generation of mobile communication technology, has been commercially deployed for about five years. Even though it is continuously updated through new releases, and with LTE Advanced Pro Release 13 being the latest one, the development of the fifth generation has been initiated. In this article, we measure how current LTE network implementations perform in comparison with the initial LTE requirements. The target is to identify certain key performance indicators that have suboptimal implementations and therefore lend themselves to careful consideration when designing and standardizing next generation wireless technology. Specifically, we analyze user and control plane latency, handover execution time, and coverage, which are critical parameters for connected mobility use cases such as road vehicle safety and efficiency. We study the latency, handover execution time, and coverage of four operational LTE networks based on 19,000 km of drive tests covering a mixture of rural, suburban, and urban environments. The measurements have been collected using commercial radio network scanners and measurement smartphones. Even though LTE has low air interface delays, the measurements reveal that core network delays compromise the overall round-trip time design requirement. LTE's breakbefore- make handover implementation causes a data interruption at each handover of 40 ms at the median level. While this is in compliance with the LTE requirements, and lower values are certainly possible, it is also clear that break-before-make will not be sufficient for connected mobility use cases such as road vehicle safety. Furthermore, the measurements reveal that LTE can provide coverage for 99 percent of the outdoor and road users, but the LTE-M or NarrowBand-IoT upgrades, as of LTE Release 13, are required in combination with other measures to allow for additional penetration losses, such as those experienced in underground parking lots. Based on the observed discrepancies between measured and standardized LTE performance, in terms of latency, handover execution time, and coverage, we conclude the article with a discussion of techniques that need careful consideration for connected mobility in fifth generation mobile communication technology.

107 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
91% related
Network packet
159.7K papers, 2.2M citations
90% related
Fading
55.4K papers, 1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202242
202156
202082
2019135
2018192