scispace - formally typeset
Search or ask a question
Topic

Lubrication theory

About: Lubrication theory is a research topic. Over the lifetime, 1713 publications have been published within this topic receiving 50261 citations. The topic is also known as: Fluid bearing.


Papers
More filters
Journal ArticleDOI
12 Aug 2016-Langmuir
TL;DR: A novel approach based on the slip of water on a particle surface was developed to overcome the divergent behavior of lubrication forces and is shown to be independent of shear rate and primary particle size for monodisperse suspensions.
Abstract: The rheological behavior of concentrated suspensions is a complicated problem because it originates in the collective motion of particles and their interaction with the surrounding fluid. For this reason, it is difficult to accurately model the effect of various system parameters on the viscosity even for highly simplified systems. We model the viscosity of a hard-sphere suspension subjected to high shear rates using the dynamic discrete element method (DEM) in three spatial dimensions. The contact interaction between particles was described by the Hertz model of elastic spheres (soft-sphere model), and the interaction of particles with flow was accounted for by the two-way coupling approach. The hydrodynamic interaction between particles was described by the lubrication theory accounting for the slip on particle surfaces. The viscosity in a simple-shear model was evaluated from the force balance on the wall. The obtained results are in close agreement with literature data for systems with hard spheres. N...

20 citations

Journal ArticleDOI
TL;DR: In this article, Stakenborg et al. proposed visco-elastohydrodynamic (VEHD) lubrication, which is a macro-hydrodynamic theory that results in calculated fluid film thicknesses, friction torques and leakage rates.
Abstract: It is shown in Part 1 of this work (Stakenborg et al., 1990) that dynamic excitation of a radial lip seal will result in nonuniform clearances, due to viscous and inertial seal material behavior. These clearances are filled with fluid. Due to entrainment effects in a converging part of the clearance, fluid pressures will develop, which are sufficiently high to overcome the radial preload. These fluid pressures are excellently described by short bearing theory. The viscous and inertial effects can lead to a type of full film lubrication which is designated visco-elastohydrodynamic (VEHD) lubrication. VEHD lubrication addresses the (apparent) parallel fluid film lubrication problem in radial lip seals. At present, it is the only macro-hydrodynamic theory that results in calculated fluid film thicknesses, friction torques and leakage rates that are in agreement with experimental data. A novel feature of VEHD lubrication is the increase of frictional torque with decreasing viscosity under conditions of full film lubrication and low viscosity values, hitherto believed to be mixed lubrication.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider displacement flows in slightly diverging or converging plane channels and demonstrate how the non-uniformity of the displacement flow geometry can affect the propagation of the interface between the heavy and light fluids in time.
Abstract: We consider displacement flows in slightly diverging or converging plane channels. The two fluids are miscible and buoyancy is significant. We assume that the channel is oriented close to horizontal. Employing a classical lubrication approximation, we simplify the governing equations to furnish a semi-analytical solution for the flux functions. Then, we demonstrate how the non-uniformity of the displacement flow geometry can affect the propagation of the interface between the heavy and light fluids in time, for various parameters studied, e.g. the viscosity ratio, a buoyancy number and rheological features. By setting the molecular diffusion effects to zero, certain solution behaviours at longer times can be practically predicted through the associated hyperbolic problem, using which it becomes possible to directly compute the interfacial features of interest, e.g. leading and trailing front heights and speeds. For a Newtonian displacement flow in a converging or uniform channel, as the buoyancy number increases from zero, we are able to classify three flow regimes based on the behaviour of the trailing front near the top of the channel: a no-back-flow regime, a stationary interface flow regime, and a sustained back-flow regime. For the case of a diverging channel flow, the sustained back-flow regime is replaced by an eventually stationary interface flow regime. In addition, as the displacement flow progresses, the leading front speed typically increases (decreases) in a converging (diverging) channel, while the opposite is usually true for the front height. For the no-back-flow regime (i.e. with small buoyancy), the solution of the displacement flow at long times in all the geometries considered converges to a similarity form, while no similarity form is found for the other flow regimes. As the displacement flow develops, frontal diffusive effects are reduced (enhanced) in a converging (diverging) channel and multiple fronts are progressively less (more) present in a converging (diverging) channel. Regarding non-Newtonian effects, a shear-thinning fluid displacing a Newtonian fluid exhibits an increasingly fast front that has a short height in a converging channel. When a yield stress is present in the displaced fluid, it is possible to find residual wall layers of displaced fluid that are completely static. These layers disappear at a certain critical downstream distance in a converging channel while they appear at a critical distance in a diverging channel. Finally, the combination of strong buoyant and yield-stress effects can modify the destiny of a second front that follows the leading front.

19 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the constant relative approach velocity of two Newtonian fluid particles on their coalescence via a film drainage model is investigated, regardless of the strength of the van der Waals forces and the value of the viscosity ratio (or the degree of the interfacial mobility).

19 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Laminar flow
56K papers, 1.2M citations
78% related
Turbulence
112.1K papers, 2.7M citations
76% related
Viscosity
53.6K papers, 1M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202265
202155
202062
201970
201864