scispace - formally typeset
Search or ask a question
Topic

Lung volumes

About: Lung volumes is a research topic. Over the lifetime, 9761 publications have been published within this topic receiving 346760 citations. The topic is also known as: Lung Volume.


Papers
More filters
Journal ArticleDOI
TL;DR: In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
Abstract: Background Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Methods Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. Results The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P Conclusions In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.

11,028 citations

Journal ArticleDOI
TL;DR: Assessing the total lung capacity is indispensable in establishing a restrictive ventilatory defect or in diagnosing abnormal lung distensibility, as may occur in patients …
Abstract: Lung volumes are subdivided into static and dynamic lung volumes. Static lung volumes are measured by methods which are based on the completeness of respiratory manoeuvres, so that the velocity of the manoeuvres should be adjusted accordingly. The measurements taken during fast breathing movements are described as dynamic lung volumes and as forced inspiratory and expiratory flows. ### 1.1 Static lung volumes and capacities The volume of gas in the lung and intrathoracic airways is determined by the properties of lung parenchyma and surrounding organs and tissues, surface tension, the force exerted by respiratory muscles, by lung reflexes and by the properties of airways. The gas volumes of thorax and lung are the same except in the case of a pneumothorax. If two or more subdivisions of the total lung capacity are taken together, the sum of the constituent volumes is described as a lung capacity. Lung volumes and capacities are described in more detail in § 2. #### 1.1.1 Determinants Factors which determine the size of the normal lung include stature, age, sex, body mass, posture, habitus, ethnic group, reflex factors and daily activity pattern. The level of maximal inspiration (total lung capacity, TLC) is influenced by the force developed by the inspiratory muscles (disorders include e.g. muscular dystrophy), the elastic recoil of the lung (disorders include e.g. pulmonary fibrosis and emphysema) and the elastic properties of the thorax and adjacent structures (disorders include e.g. ankylosis of joints). The level of maximal expiration (residual volume, RV) is determined by the force exerted by respiratory muscles (disorders include e.g. muscle paralysis), obstruction, occlusion and compression of small airways (disorders include e.g. emphysema) and by the mechanical properties of lung and thorax (disorders include diffuse fibrosis, kyphoscoliosis). Assessing the total lung capacity is indispensable in establishing a restrictive ventilatory defect or in diagnosing abnormal lung distensibility, as may occur in patients …

5,052 citations

Journal ArticleDOI
TL;DR: To the authors' knowledge, this constitutes the first example of a protective effect of PEEP during permeability edema, which was markedly reduced by PEEP and preserved the normal ultrastructural aspect of the alveolar epithelium.
Abstract: The respective roles of high pressure and high tidal volume to promote high airway pressure pulmonary edema are unclear. Positive end-expiratory pressure (PEEP) was shown to reduce lung water content in this type of edema, but its possible effects on cellular lesions were not documented. We compared the consequences of normal tidal volume ventilation in mechanically ventilated rats at a high airway pressure (HiP-LoV) with those of high tidal volume ventilation at a high (HiP-HiV) or low (LoP-HiV) airway pressure and the effects of PEEP (10 cm H2O) on both edema and lung ultrastructure. Pulmonary edema was assessed by extravascular lung water content and microvascular permeability by the dry lung weight and the distribution space of 125I-labeled albumin. HiP-LoV rat lungs were not different from those of controls (7 cm H2O peak pressure ventilation). By contrast, the lungs from the groups submitted to high volume ventilation had significant permeability type edema. This edema was more pronounced in LoP-HiV...

1,520 citations

Journal ArticleDOI
TL;DR: In ARDS, the percentage of potentially recruitable lung is extremely variable and is strongly associated with the response to PEEP, which may decrease ventilator-induced lung injury by keeping lung regions open that otherwise would be collapsed.
Abstract: Background In the acute respiratory distress syndrome (ARDS), positive end-expiratory pressure (PEEP) may decrease ventilator-induced lung injury by keeping lung regions open that otherwise would be collapsed. Since the effects of PEEP probably depend on the recruitability of lung tissue, we conducted a study to examine the relationship between the percentage of potentially recruitable lung, as indicated by computed tomography (CT), and the clinical and physiological effects of PEEP. Methods Sixty-eight patients with acute lung injury or ARDS underwent whole-lung CT during breath-holding sessions at airway pressures of 5, 15, and 45 cm of water. The percentage of potentially recruitable lung was defined as the proportion of lung tissue in which aeration was restored at airway pressures between 5 and 45 cm of water. Results The percentage of potentially recruitable lung varied widely in the population, accounting for a mean (±SD) of 13±11 percent of the lung weight, and was highly correlated with the percentage of lung tissue in which aeration was maintained after the application of PEEP (r 2 = 0.72, P<0.001). On average, 24 percent of the lung could not be recruited. Patients with a higher percentage of potentially recruitable lung (greater than the median value of 9 percent) had greater total lung weights (P<0.001), poorer oxygenation (defined as a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen) (P<0.001) and respiratory-system compliance (P = 0.002), higher levels of dead space (P = 0.002), and higher rates of death (P = 0.02) than patients with a lower percentage of potentially recruitable lung. The combined physiological variables predicted, with a sensitivity of 71 percent and a specificity of 59 percent, whether a patient’s proportion of potentially recruitable lung was higher or lower than the median. Conclusions In ARDS, the percentage of potentially recruitable lung is extremely variable and is strongly associated with the response to PEEP.

1,260 citations


Network Information
Related Topics (5)
Lung
44.3K papers, 1.3M citations
89% related
COPD
32.3K papers, 965.3K citations
86% related
Lung injury
37.2K papers, 1.2M citations
84% related
Asthma
52.8K papers, 1.6M citations
81% related
Hemodynamics
34.9K papers, 1.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022259
2021320
2020265
2019252
2018236