scispace - formally typeset
Search or ask a question
Topic

Lysis

About: Lysis is a research topic. Over the lifetime, 6072 publications have been published within this topic receiving 216978 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Rough and smooth strains of Brucella melitensis released a membranous material that was devoid of detectable NADH oxidase and succinic dehydrogenase activity but that contained lipopolysaccharide, proteins, and phospholipids that were composed of two fractions that were of different sizes which were separated by differential ultracentrifugation.
Abstract: Rough and smooth strains of Brucella melitensis released a membranous material that was devoid of detectable NADH oxidase and succinic dehydrogenase activity (cytoplasmic membrane markers) but that contained lipopolysaccharide, proteins, and phospholipids. This material was composed of two fractions that had similar chemical compositions but that were of different sizes which were separated by differential ultracentrifugation. Electron microscopy showed that both fractions are made of unit membrane structures. The membrane fragments were released during the exponential phase of growth, and no leakage of malic dehydrogenase activity (cytosol marker) was detected. Thus, the fragments were unlikely a result of cell lysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that, although group 2 Brucella outer membrane proteins and lipoprotein were not detected, the proteins in the membranous material were outer membrane proteins. Gas-liquid chromatography analysis showed a similar fatty acid profile for the cell envelope and the outer membrane fragments of the smooth strain B. melitensis 16M. In contrast, the outer membrane fragments from the rough 115 strain were enriched in palmitic and stearic acids. With respect to the unfractionated cell envelope, outer membrane fragments were enriched in phosphatidylcholine, a phospholipid that is unusual in bacterial membranes.

88 citations

Journal ArticleDOI
TL;DR: The cell cycle of the reproducing cells in the plateau period was found to be characterized by an extended G2 and an extended and highly variable S phase, indicating that a large proportion of the plateauperiod cells were in a G1-like part of the cell cycle.

88 citations

Journal ArticleDOI
TL;DR: A correlation between the membrane toxicity and the reduction in surface tension was revealed and a variety of saponins with distinct structures were tested.

88 citations

Journal ArticleDOI
TL;DR: Gentamicin, an aminoglycoside antibiotic known to inhibit protein synthesis, had a detrimental effect on the integrity of the cell wall of Pseudomonas aeruginosa ATCC 9027 (a susceptible strain) as shown by electron microscopy using negative-staining, thin-sectioning, and freeze-fracture techniques.
Abstract: Gentamicin, an aminoglycoside antibiotic known to inhibit protein synthesis, had a detrimental effect on the integrity of the cell wall of Pseudomonas aeruginosa ATCC 9027 (a susceptible strain) as shown by electron microscopy using negative-staining, thin-sectioning, and freeze-fracture techniques. The disruption occurred in a sequential manner, moving from the outer membrane to the inner membrane, and could result in lysis of the cell. During this process the outer membrane lost 34% of its total protein and 30% of its lipopolysaccharide (measured as 2-keto-3-deoxyoctonate) upon exposure to 25 micrograms of gentamicin per ml for 15 min. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the outer membrane proteins showed altered banding patterns after exposure to gentamicin. Atomic absorption spectrophotometry revealed a decrease in magnesium and calcium content (18 and 38%, respectively) in the cell envelopes after gentamicin treatment. It is proposed that gentamicin displaces essential metal cations within the outer membrane, consequently destabilizing and extracting organic constituents. Small transient holes are thereby produced which make the outer membrane more permeable to the antibiotic and which expose the protoplast to high concentrations of gentamicin. This membrane effect may contribute to the effects of protein synthesis inhibition during the killing process.

88 citations

Journal ArticleDOI
TL;DR: A rat erythrocyte membrane glycoprotein of molecular mass 21 kDa which inserts into cell membranes and is a potent inhibitor of the rat MAC is reported, which is concluded to be the rat homologue of the human MAC-inhibitory protein CD59 antigen.
Abstract: The membrane attack complex (MAC) of complement in humans is regulated by several membrane-bound proteins; however, no such proteins have so far been described in other species. Here we report the isolation and characterization of a rat erythrocyte membrane glycoprotein of molecular mass 21 kDa which inserts into cell membranes and is a potent inhibitor of the rat MAC. This protein, here called rat inhibitory protein (RIP), was first partially purified by column chromatography from a butanol extract of rat erythrocyte membranes. Monoclonal antibodies (Mabs) were raised against RIP and used for its affinity purification. Affinity-purified RIP was shown to inhibit in a dose-dependent manner the cobra venom factor (CVF)-mediated 'reactive' lysis of guinea pig erythrocytes by rat complement. Conversely, the anti-RIP MAbs 6D1 and TH9 were shown to markedly enhance the CVF-mediated lysis of rat erythrocytes by rat complement. RIP acted late in the assembly of the MAC (at or after the C5b-8 stage) and was releasable from the membranes of rat erythrocytes by phosphatidylinositol-specific phospholipase C. These features, together with its size, deglycosylation pattern and N-terminal amino acid sequence, lead us to conclude that RIP is the rat homologue of the human MAC-inhibitory protein CD59 antigen.

87 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
86% related
Antigen
170.2K papers, 6.9M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Immune system
182.8K papers, 7.9M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023389
2022607
2021123
2020142
2019139
2018161