scispace - formally typeset
Search or ask a question
Topic

Lysis

About: Lysis is a research topic. Over the lifetime, 6072 publications have been published within this topic receiving 216978 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The process of bacterial infection with φX174 particles has been studied by density-gradient analysis of the contents of the infected cells prior to normal lysis, finding that single-stranded progeny DNA appears in mature progeny virus particles as early as eight minutes after infection.

388 citations

Journal Article
TL;DR: Data suggest that CD59 exerts its C-inhibitory activity by limiting incorporation of multiple C9 into the membrane C5b-9 complex by limiting the extent of formation of SDS-resistant C9 polymer.
Abstract: A human E membrane protein that inhibits lysis by the purified human C5b-9 proteins was isolated and characterized. After final purification, the protein migrated as an 18- to 20-kDa band by SDS-PAGE. Elution from gel slices and functional assay after SDS-PAGE (nonreduced) confirmed that all C5b-9 inhibitory activity of the purified protein resided in the 18- to 20-kDa band. Phosphatidylinositol-specific phospholipase C digestion of the purified protein abolished 50% of its C5b-9 inhibitory activity, and removed approximately 15% of the protein from human E. Western blots of normal and paroxysmal nocturnal hemoglobinuria E revealed an absence of the 18- to 20-kDa protein in the paroxysmal nocturnal hemoglobinuria E cells. The identity of this E protein with leukocyte Ag CD59 (P18, HRF20) was confirmed immunochemically and by N-terminal amino acid sequence analysis. A blocking antibody raised against the purified protein reacted with a single 18- to 20-kDa band on Western blots of human erythrocyte membranes. Prior incubation of human E with the F(ab) of this antibody increased subsequent lysis by the purified human C5b-9 proteins. Potentiation of C5b-9-mediated lysis was observed when erythrocytes were preincubated with this blocking antibody before C5b-9 assembly was initiated, or, when this antibody was added after 30 min, 0 degrees C incubation of C5b-8-treated E with C9. Chicken E incubated with purified CD59 were used to further characterize the mechanism of its C-inhibitory activity. Preincorporation of CD59 into these cells inhibited lysis by C5b-9, regardless of whether CD59 was added before or after assembly of the C5b-8 complex. When incorporated into the membrane, CD59 inhibited binding of 125I-C9 to membrane C5b-8 and reduced the extent of formation of SDS-resistant C9 polymer. The inhibitory effect of CD59 on 125I-C9 incorporation was most pronounced at near-saturating input of C9 (to C5b-8). By contrast, CD59 did not inhibit either C5b67 deposition onto the cell surface, or, binding of 125I-C8 to preassembled membrane C5b67. Taken together, these data suggest that CD59 exerts its C-inhibitory activity by limiting incorporation of multiple C9 into the membrane C5b-9 complex.

387 citations

Journal ArticleDOI
TL;DR: A robust, simple, rapid, and effective method was developed for simultaneous recovery of both RNA and DNA from soils of diverse composition by adapting the previous grinding-based cell lysis method for DNA extraction.
Abstract: Recovery of mRNA from environmental samples for measurement of in situ metabolic activities is a significant challenge. A robust, simple, rapid, and effective method was developed for simultaneous recovery of both RNA and DNA from soils of diverse composition by adapting our previous grinding-based cell lysis method (Zhou et al., Appl. Environ. Microbiol. 62:316–322, 1996) for DNA extraction. One of the key differences is that the samples are ground in a denaturing solution at a temperature below 0°C to inactivate nuclease activity. Two different methods were evaluated for separating RNA from DNA. Among the methods examined for RNA purification, anion exchange resin gave the best results in terms of RNA integrity, yield, and purity. With the optimized protocol, intact RNA and high-molecular-weight DNA were simultaneously recovered from 19 soil and stream sediment samples of diverse composition. The RNA yield from these samples ranged from 1.4 to 56 μg g of soil−1 dry weight), whereas the DNA yield ranged from 23 to 435 μg g−1. In addition, studies with the same soil sample showed that the DNA yield was, on average, 40% higher than that in our previous procedure and 68% higher than that in a commercial bead milling method. For the majority of the samples, the DNA and RNA recovered were of sufficient purity for nuclease digestion, microarray hybridization, and PCR or reverse transcription-PCR amplification.

381 citations

Journal ArticleDOI
TL;DR: It was shown that normal erythrocytes are rendered susceptible to CoFBb-initiated hemolysis, and it is indicated that the susceptibility of PNH III ery Throcytes to reactive lysis is causally related to a deficiency of the 18-kD membrane inhibitor.
Abstract: The observation that type III erythrocytes of paroxysmal nocturnal hemoglobinuria (PNH) are susceptible to hemolysis initiated by activated cobra venom factor complexes (CoFBb), whereas normal erythrocytes are resistant, implies that the PNH III cells are deficient in a membrane constituent that regulates this process. To isolate the inhibitory factor from normal erythrocytes, membrane proteins were first extracted with butanol and then subjected to sequential anion exchange, hydroxylapatite, and hydrophobic chromatography. Analysis by SDS-PAGE and silver stain of the inhibitory fractions showed a single band corresponding to a protein with an apparent Mr of 18 kD. PNH erythrocytes were incubated with incremental concentrations of the radiolabeled protein and then washed. In a dose-dependent fashion, the protein incorporated into the cell membrane and inhibited CoFBb-initiated lysis. This protein inhibitor functioned by restricting the assembly of the membrane attack complex at the level of C7 and C8 incorporation. By using a monospecific antibody to block the function of the inhibitor, it was shown that normal erythrocytes are rendered susceptible to CoFBb-initiated hemolysis. Analysis by Western blot of membrane proteins revealed that PNH III erythrocytes are deficient in the 18-kD protein. By virtue of its molecular weight and inhibitory activity, the 18-kD protein appears to be discrete from other previously described erythrocyte membrane proteins that regulate complement. These studies also indicate that the susceptibility of PNH III erythrocytes to reactive lysis is causally related to a deficiency of the 18-kD membrane inhibitor.

377 citations

Journal ArticleDOI
TL;DR: The "mature" protein, corresponding to amino acid residues 74-282 of the predicted pre-pro sequence, was overexpressed in Escherichia coli and was purified to homogeneity and was able to inhibit the complement-mediated lysis of sheep erythrocytes by human serum and was shown to be a tetramer by gel filtration in nondissociating conditions.
Abstract: This work describes the functional characterization, cDNA cloning, and expression of a novel cell surface protein. This protein designated gC1q-R, was first isolated from Raji cells and was found to bind to the globular "heads" of C1q molecules, at physiological ionic strength, and also to inhibit complement-mediated lysis of sheep erythrocytes by human serum. The NH2-terminal amino acid sequence of the first 24 residues of the C1q-binding protein was determined and this information allowed the synthesis of two degenerate polymerase chain reaction primers for use in the preparation of a probe in the screening of a B cell cDNA library. The cDNA isolated, using this probe, was found to encode a pre-pro protein of 282 residues. The NH2 terminus of the protein isolated from Raji cells started at residue 74 of the predicted pre-pro sequence. The cDNA sequence shows that the purified protein has three potential N-glycosylation residues and is a highly charged, acidic molecule. Hence, its binding to C1q may be primarily but not exclusively due to ionic interactions. The "mature" protein, corresponding to amino acid residues 74-282 of the predicted pre-pro sequence, was overexpressed in Escherichia coli and was purified to homogeneity. This recombinant protein was also able to inhibit the complement-mediated lysis of sheep erythrocytes by human serum and was shown to be a tetramer by gel filtration in nondissociating conditions. Northern blot and RT-PCR studies showed that the C1q-binding protein is expressed at high levels in Raji and Daudi cell lines, at moderate levels in U937, Molt-4, and HepG2 cell lines, and at a very low level in the HL60 cell line. However, it is not expressed in the K562 cell line. Comparison of gC1q-R NH2-terminal sequence with that of the receptor for the collagen-like domain of C1q (cC1q-R) showed no similarity. Furthermore, antibodies to gC1q-R or an 18-amino acid residue-long NH2-terminal synthetic gC1q-R peptide did not cross-react with antibodies to cC1q-R. Anti-gC1q-R immunoblotted a 33-kD Raji cell membrane protein, whereas anti cC1q-R recognized a molecule of approximately 60 kD. The NH2-terminal sequence of gC1g-R appears to be displayed extracellularly since anti-gC1g-R peptide reacted with surface molecules on lymphocytes, polymorphonuclear leukocytes, and platelets, as assessed by flow cytometric and confocal laser scanning microscopic analyses.(ABSTRACT TRUNCATED AT 400 WORDS)

372 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
86% related
Antigen
170.2K papers, 6.9M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Immune system
182.8K papers, 7.9M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023389
2022607
2021123
2020142
2019139
2018161