scispace - formally typeset
Search or ask a question
Topic

Lysis

About: Lysis is a research topic. Over the lifetime, 6072 publications have been published within this topic receiving 216978 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Both methods enabled the polymerase chain reaction to be applied directly to DNA extracted from samples of cheese, coleslaw and raw chicken and allowed the direct rapid, sensitive and specific detection of Yersinia enterocolitica, Aerococcus viridans and Listeria monocytogenes in these foods.
Abstract: Two methods for the successful extraction of DNA from foods are described. The rapid lysis method uses a proteinase K buffer system to lyse cells and solubilize food samples. DNA is then precipitated using isopropanol. The second method achieves cell lysis using toluene and mutanolysin, and solubilization using guanidium thiocyanate. Following protein removal with organic solvents DNA is precipitated with isopropanol. Both methods enabled the polymerase chain reaction to be applied directly to DNA extracted from samples of cheese, coleslaw and raw chicken and allowed the direct rapid, sensitive and specific detection of Yersinia enterocolitica, Aerococcus viridans and Listeria monocytogenes in these foods.

82 citations

Journal ArticleDOI
TL;DR: The main focus was on the specific isolation of DNA from different microorganisms, especially DNA from actinomycetes, as these cells are very difficult to lyse, in contrast to non-actinomyCetes.
Abstract: Many protocols to extract DNA directly from soil samples have been developed in recent years. We employed two extraction methods which differed in the method of lysis and compared these methods with respect to yield, purity and degree of shearing. The main focus was on the specific isolation of DNA from different microorganisms, especially DNA from actinomycetes, as these cells are very difficult to lyse, in contrast to non-actinomycetes. Thus, we used both methods to isolate DNA from Pseudomonas, Arthrobacter and Rhodococcus and from soil spiked with the respective microorganisms. Both methods rendered high DNA yields with a low degree of shearing, but differed in the type of cells that were lysed. By one protocol (utilizing enzymatic lysis) only DNA from the Gram-negative Pseudomonas strain could be obtained whereas, by the other protocol (utilizing mechanical lysis), all microorganisms that were used could be lysed and DNA extracted from them. Using a combination of both protocols, DNA from those organisms could be obtained selectively. Furthermore, one of the protocols was modified, resulting in higher DNA yield and purity.

82 citations

Journal ArticleDOI
TL;DR: In this paper, the results showed that the extraction with glutaraldehyde 3% (w/v) was the most suitable method, extracting great amounts of organic carbon without promoting cell lysis or permeabilization.

81 citations

Journal ArticleDOI
TL;DR: Advantages of the minisonicator over macrofluidic implementations include a small sample volume, reduced energy consumption and compatibility with other microfluidics blocks, which make this device an attractive option for "lab-on-a-chip" and portable applications.
Abstract: Biologic agent screening is a three-step process: lysis of host cell membranes or walls to release their DNA, polymerase chain reaction to amplify the genetic material and screening for distinguishing genetic signatures. Macrofluidic devices commonly use sonication as a lysis method. Here, we present a piezoelectric microfluidic minisonicator and test its performance. Eukaryotic human leukemia HL-60 cells and Bacillus subtilis bacterial spores were lysed as they passed through a microfluidic channel at 50 microL/min and 5 microL/min, respectively, in the absence of any chemical denaturants, enzymes or microparticles. We used fluorescence-activated cell sorting and hematocytometry to measure 80% lysis of HL-60 cells after 3 s of sonication. Real-time polymerase chain reaction indicated 50% lysis of B. subtilis spores with 30 s of sonication. Advantages of the minisonicator over macrofluidic implementations include a small sample volume (2.5 microL), reduced energy consumption and compatibility with other microfluidic blocks. These features make this device an attractive option for "lab-on-a-chip" and portable applications.

81 citations

Journal ArticleDOI
TL;DR: The results indicate that ultrasound- induced CD19 removal from R1 cells can occur without accompanying gross membrane loss, and indicate that the ultrasound-induced morphological change is associated with lethal membrane poration.
Abstract: The study objective was to gain insight into ultrasound-induced, sub-lytic cell surface modifications. Two primary hypotheses were tested by flow cytometric methods; viz ., sonication will: 1. remove all or part of a specific cell surface marker in lymphocytes surviving insonation, and 2. induce transient pores in the cell membranes of some surviving cells. RPMI 1788 human lymphocytes were exposed in vitro to 1-MHz, continuous-wave ultrasound (∼8 W/cm 2 I SP ) for 30 s, which lysed ∼50% of the cells. Insonation: 1. altered cell morphology, increasing the population of cells of reduced size but high structure (designated as population R2), many of which were nonviable, and diminishing the population of cells of large size and high structure (designated as population R1), most of which were viable, 2. diminished the fluorescence signal from the pan B lymphocyte marker CD19 in populations R1 and R2 to equivalent extents, and 3. increased by ∼7-fold the number of transiently permeabilized cells in R1, as evidenced by simultaneous uptake of propidium iodide and fluorescein diacetate. The results indicate that ultrasound-induced CD19 removal from R1 cells can occur without accompanying gross membrane loss. The cell morphology/mortality shifts indicate that the ultrasound-induced morphological change is associated with lethal membrane poration, suggesting that the diminished CD19 fluorescence signal from insonated R2 cells arises partly by simultaneous loss of membrane fragments, CD19 and cytoplasm.

81 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
86% related
Antigen
170.2K papers, 6.9M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Immune system
182.8K papers, 7.9M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023389
2022607
2021123
2020142
2019139
2018161