scispace - formally typeset
Search or ask a question
Topic

Lysis

About: Lysis is a research topic. Over the lifetime, 6072 publications have been published within this topic receiving 216978 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The final DNA preparation has high transforming activity, especially for the joint transformation of linked markers, as well as high purity and low sedimentation coefficients.

1,844 citations

Journal ArticleDOI
TL;DR: The RBB + C method resulted in a 1.5- to 6-fold increase in DNA yield when compared to three other widely used methods and resulted in improved denaturing gradient gel electrophoresis (DGGE) profiles, which is indicative of a more complete lysis and representation of microbial diversity present in such samples.
Abstract: Several DNA extraction methods have been reported for use with digesta or fecal samples, but problems are often encountered in terms of relatively low DNA yields and/or recovering DNA free of inhibitory substances. Here we report a modified method to extract PCR-quality microbial community DNA from these types of samples, which employs bead beating in the presence of high concentrations of sodium dodecyl sulfate (SDS), salt, and EDTA, and with subsequent DNA purification by QIA® columns [referred to as repeated bead beating plus column (RBB+C) method]. The RBB+C method resulted in a 1.5- to 6-fold increase in DNA yield when compared to three other widely used methods. The community DNA prepared with the RBB+C method was also free of inhibitory substances and resulted in improved denaturing gradient gel electrophoresis (DGGE) profiles, which is indicative of a more complete lysis and representation of microbial diversity present in such samples.

1,288 citations

Journal ArticleDOI
TL;DR: An improved method is described for the purification of the DNA-dependent RNA polymerase from Escherichia coli, resulting in a yield of 250 mg of holoenzyme from 500 g of cells.
Abstract: An improved method is described for the purification of the DNA-dependent RNA polymerase [ribonucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6] from Escherichia coli. The method involves lysozyme-sodium deoxycholate lysis, low-speed centrifugation, precipitation with Polymin P, elution from the Polymin P precipitate, ammonium sulfate precipitation, and chromatography on DNA-cellulose and Bio-Gel A 5m. RNA polymerase is purified to electrophoretic homogeneity in 2 days with a recovery of 45%, resulting in a yield of 250 mg of holoenzyme from 500 g of cells.

1,045 citations

Journal ArticleDOI
TL;DR: Evidence is presented that penicillin bulge formation is due to the inhibition of proteins 2 and 3 in the absence of inhibition of protein 1.
Abstract: The varied effects of beta-lactam antibiotics on cell division, cell elongation, and cell shape in E. coli are shown to be due to the presence of three essential penicillin binding proteins with distinct roles in these three processes. (A) Cell shape: beta-Lactams that specifically result in the production of ovoid cells bind to penicillin binding protein 2 (molecular weight 66,000). A mutant has been isolated that fails to bind beta-lactams to protein 2, and that grows as round cells. (B) Cell division: beta-Lactams that specifically inhibit cell division bind preferentially to penicillin binding protein 3 (molecular weight 60,000). A temperature-sensitive cell division mutant has been shown to have a thermolabile protein 3. (C) Cell elongation: One beta-lactam that preferentially inhibits cell elongation and causes cell lysis binds preferentially to binding protein 1 (molecular weight 91,000). Evidence is presented that penicillin bulge formation is due to the inhibition of proteins 2 and 3 in the absence of inhibition of protein 1.

973 citations

Journal ArticleDOI
TL;DR: It is indicated that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.
Abstract: We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.

963 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
86% related
Antigen
170.2K papers, 6.9M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Immune system
182.8K papers, 7.9M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023389
2022607
2021123
2020142
2019139
2018161