scispace - formally typeset
Search or ask a question
Topic

Lysis

About: Lysis is a research topic. Over the lifetime, 6072 publications have been published within this topic receiving 216978 citations.


Papers
More filters
Journal ArticleDOI
01 Apr 2014-eLife
TL;DR: A novel cell lysis mechanism by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) that permeabilizes cells via a novel membrane disrupting mechanism is described.
Abstract: Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique 'cationic grip' configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001.

148 citations

Journal Article
TL;DR: It is demonstrated that DTX-mediated apoptosis is initiated at a step beyond the ADP ribosylation of EF-2, and the synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined to determine the pathway mediated by DTX in synergy.
Abstract: We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings demonstrate that DTX-mediated apoptosis is initiated at a step beyond the ADP ribosylation of EF-2.

147 citations

Journal ArticleDOI
TL;DR: Evidence is presented that epsilon-toxin cytotoxic activity is correlated with the formation of a large membrane complex and efflux of intracellular K+ without entry of the toxin into the cytosol.
Abstract: Epsilon-toxin is produced by Clostridium perfringens types B and D and is responsible for a rapidly fatal enterotoxemia in animals, which is characterized by edema in several organs due to an increase in blood vessel permeability. The Madin-Darby canine kidney (MDCK) cell line has been found to be susceptible to epsilon-toxin (D. W. Payne, E. D. Williamson, H. Havard, N. Modi, and J. Brown, FEMS Microbiol. Lett. 116:161-168, 1994). Here we present evidence that epsilon-toxin cytotoxic activity is correlated with the formation of a large membrane complex (about 155 kDa) and efflux of intracellular K+ without entry of the toxin into the cytosol. Epsilon-toxin induced swelling, blebbing, and lysis of MDCK cells. Iodolabeled epsilon-toxin bound specifically to MDCK cell membranes at 4 and 37 labeled C and was associated with a large complex (about 155 kDa). The binding of epsilon-toxin to the cell surface was corroborated by immunofluorescence staining. The complex formed at 37 degrees C was more stable than that formed at 4 degrees C, since it was not dissociated by 5% sodium dodecyl sulfate and boiling.

147 citations

Journal ArticleDOI
TL;DR: This work describes a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA.
Abstract: The quality and yield of extracted DNA are critical for the majority of downstream applications in molecular biology. Moreover, molecular techniques such as quantitative real-time PCR (qPCR) are becoming increasingly widespread; thus, validation and cross-laboratory comparison of data require standardization of upstream experimental procedures. DNA extraction methods depend on the type and size of starting material(s) used. As such, the extraction of template DNA is arguably the most significant variable when cross-comparing data from different laboratories. Here, we describe a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA. The protocol relies on a CTAB-based buffer for cell lysis and further purification of DNA with phenol : chloroform : isoamyl alcohol. The protocol has been used successfully for DNA purification from rumen fluid and plant cells. Moreover, after slight alterations, the same protocol was used for large-scale extraction of DNA from pure cultures of Gram-positive and Gram-negative bacteria. The yield of the DNA obtained with this method exceeded that from the same samples using commercial kits, and the quality was confirmed by successful qPCR applications.

147 citations

Book ChapterDOI
TL;DR: This chapter discusses the method of guanidine isothiocyanate preparation of total RNA, which is a versatile and efficient way to extract intact RNA from most tissues and cultured cells, even if the endogenous level of RNase is high.
Abstract: This chapter discusses the method of guanidine isothiocyanate preparation of total RNA, which is a versatile and efficient way to extract intact RNA from most tissues and cultured cells, even if the endogenous level of RNase is high. The cells are lysed in guanidine isothiocyanate using a tissue homogenizer. The lysate is layered onto a CsCl gradient and spun in an ultracentrifuge. Proteins remain in the aqueous guanidine portion, DNA bands in the CsCl, and RNA pellets in the bottom of the tube. The RNA is recovered by redissolving the pellet. The recovery of RNA is usually excellent if the capacity of the gradient is not exceeded. The method can also be used to isolate RNA from tissue or to isolate both RNA and DNA from cells. The time taken to follow this method is two days.

147 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
86% related
Antigen
170.2K papers, 6.9M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Immune system
182.8K papers, 7.9M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023389
2022607
2021123
2020142
2019139
2018161