scispace - formally typeset
Search or ask a question
Topic

Machining

About: Machining is a research topic. Over the lifetime, 121368 publications have been published within this topic receiving 1005925 citations. The topic is also known as: subtractive manufacturing & machining process.


Papers
More filters
Book
13 Apr 2000
TL;DR: In this paper, the authors discuss the application of metal cutting to manufacturing problems, including the design of real-time trajectory generation and interpolation algorithms, and CNC-oriented error analysis.
Abstract: Metal cutting is a widely used method of producing manufactured products. The technology of metal cutting has advanced considerably along with new materials, computers, and sensors. This new edition treats the scientific principles of metal cutting and their practical application to manufacturing problems. It begins with metal cutting mechanics, principles of vibration, and experimental modal analysis applied to solving shop floor problems. Notable is the in-depth coverage of chatter vibrations, a problem experienced daily by manufacturing engineers. The essential topics of programming, design, and automation of CNC (computer numerical control) machine tools, NC (numerical control) programming, and CAD/CAM technology are discussed. The text also covers the selection of drive actuators, feedback sensors, modeling and control of feed drives, the design of real time trajectory generation and interpolation algorithms, and CNC-oriented error analysis in detail. Each chapter includes examples drawn from industry, design projects, and homework problems. This book is ideal for advanced undergraduate and graduate students, as well as practicing engineers.

1,854 citations

Journal ArticleDOI
TL;DR: Electrical discharge machining (EDM) has been continuously evolving from a mere tool and die making process to a micro-scale application machining alternative attracting a significant amount of research interests as mentioned in this paper.
Abstract: Electrical discharge machining (EDM) is a well-established machining option for manufacturing geometrically complex or hard material parts that are extremely difficult-to-machine by conventional machining processes. The non-contact machining technique has been continuously evolving from a mere tool and die making process to a micro-scale application machining alternative attracting a significant amount of research interests. In recent years, EDM researchers have explored a number of ways to improve the sparking efficiency including some unique experimental concepts that depart from the EDM traditional sparking phenomenon. Despite a range of different approaches, this new research shares the same objectives of achieving more efficient metal removal coupled with a reduction in tool wear and improved surface quality. This paper reviews the research work carried out from the inception to the development of die-sinking EDM within the past decade. It reports on the EDM research relating to improving performance measures, optimising the process variables, monitoring and control the sparking process, simplifying the electrode design and manufacture. A range of EDM applications are highlighted together with the development of hybrid machining processes. The final part of the paper discusses these developments and outlines the trends for future EDM research.

1,421 citations

Journal ArticleDOI
TL;DR: In this article, the main problems associated with the machining of titanium as well as tool wear and the mechanisms responsible for tool failure are discussed. But no equivalent development has been made for cutting titanium alloys due primarily to their peculiar characteristics.

1,417 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe which types of laser-induced consolidation can be applied to what type of material, and demonstrate that although SLS/SLM can process polymers, metals, ceramics and composites, quite some limitations and problems cause the palette of applicable materials still to be limited.

1,241 citations

Journal ArticleDOI
TL;DR: An analysis of the chip geometry and the force system found in the case of orthogonal cutting accompanied by a type 2 chip has yielded a collection of useful equations which make possible the study of actual machining operations in terms of basic mechanical quantities as mentioned in this paper.
Abstract: An analysis of the chip geometry and the force system found in the case of orthogonal cutting accompanied by a type 2 chip has yielded a collection of useful equations which make possible the study of actual machining operations in terms of basic mechanical quantities. The shearing strain undergone by the metal during chip formation, and the velocities of shear and of chip flow are among the geometrical quantities which can be quantitatively determined. The force relationships permit calculation of such quantities as the various significant force components, stresses, the coefficient of friction between chip and cutting tool, and the work done in shearing the metal and in overcoming friction on the tool face. The experimental methods by which such analyses can be readily made are described. Observed and calculated values from typical tests are presented.

1,152 citations


Network Information
Related Topics (5)
Surface roughness
70.1K papers, 1M citations
85% related
Welding
206.5K papers, 1.1M citations
83% related
Microstructure
148.6K papers, 2.2M citations
82% related
Coating
379.8K papers, 3.1M citations
80% related
Alloy
171.8K papers, 1.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,005
20226,535
20214,178
20208,620
20199,321
20189,283