scispace - formally typeset
Search or ask a question

Showing papers on "Machining published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the machinability of near-beta titanium alloys like Ti555.3 compared with the commonly used Ti6Al4V was analyzed and a correlation between the mechanical properties of work material, tool wear, and component forces was found.

473 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of major advances in techniques such as minimum quantity lubrication (MQL)/near dry machining (NDM), high pressure coolant (HPC), cryogenic cooling, compressed air cooling and use of solid lubricants/coolants.
Abstract: The past century has witnessed significant advancements in turning process, cutting tools, machine controls and coolant/lubricant chemistry. These developments have particularly enhanced the machining of difficult-to-cut materials, which are used for aerospace, steam turbine, bearing industry, nuclear and automotive applications. In turning operation, friction and heat generation at the cutting zone are the frequent problems, which affect the tool life and surface finish apart from other machining results. This mechanism of heat generation plays quite a negative role during the turning of modern materials due to their peculiar characteristics such as poor thermal conductivity, high strength at elevated temperature, resistance to wear and chemical degradation. A good understanding of the methods of lubrication/cooling at the cutting zone, reduction of heat generation will lead to efficient and economic machining of these modern materials. This paper presents an overview of major advances in techniques as minimum quantity lubrication (MQL)/near dry machining (NDM), high pressure coolant (HPC), cryogenic cooling, compressed air cooling and use of solid lubricants/coolants. These techniques have resulted in reduction in friction and heat at the cutting zone, hence improved productivity of the process. A brief survey of modeling/FEA techniques is also performed.

438 citations


Journal ArticleDOI
TL;DR: In this paper, a review on the phenomenon of surface modification by electric discharge machining and future trends of its applications is presented, with particular emphasis on the potential of this process for surface modification.

432 citations


Journal ArticleDOI
TL;DR: In this article, the cutting edge rounding (CER) was introduced as a measure of sharpness/bluntness of uncoated carbide tools during drilling CFRP composite laminates.
Abstract: An evenly and smoothly distributed abrasion wear, observed along the entire cutting edge of an uncoated carbide drill bit in drilling CFRPs, is due to the highly abrasive nature of the carbon fibres. A very few researchers have only quoted this wear mode as being responsible for giving rise to the rounding of the cutting edge, or its bluntness. However, this wear feature has seldom been investigated, unlike the conventional flank wear in practice. This paper offers a new approach in unveiling and introducing the cutting edge rounding (CER) – a latent wear characteristic as a measure of sharpness/bluntness – of uncoated cemented carbide tools during drilling CFRP composite laminates. Four different types of drills (conventional and specialised) were tested to assess the applicability and relevance of this new wear feature. Mechanical loads (drilling thrust and torque) were recorded, and the hole entry and exit delamination were quantified. For the utilised tools, the accruing magnitude of CER was also recorded, in parallel with studying their conventional flank wear. Very appreciable correlations between the CER and the drilling loads, and also the quantitative delamination results are observed. Results reveal that this new wear type develops almost similarly for the selected tools and is practically independent of their respective conventional flank wear patterns. Moreover, a distinct, non-zero magnitude of the CER for a very fresh tool state may provide researchers with some lucid information in further studying the results during wear tests, more emphatically. The CER correlations with quantitative delamination results are noticed quite comparable to those of the conventional flank wear via statistical linear regression analyses.

414 citations


Journal ArticleDOI
TL;DR: In this article, a cyclic force was produced during the formation of segmented chips and the force frequency was the same as the chip segmentation frequency, and the peak of the cyclic forces was 1.18 times that producing the continuous chip.
Abstract: Chip formation during dry turning of Ti6Al4V alloy has been examined in association with dynamic cutting force measurements under different cutting speeds, feed rates and depths of cut. Both continuous and segmented chip formation processes were observed in one cut under conditions of low cutting speed and large feed rate. The slipping angle in the segmented chip was 55°, which was higher than that in the continuous chip (38°). A cyclic force was produced during the formation of segmented chips and the force frequency was the same as the chip segmentation frequency. The peak of the cyclic force when producing segmented chips was 1.18 times that producing the continuous chip. The undeformed surface length in the segmented chip was found to increase linearly with the feed rate but was independent of cutting speed and depth of cut. The cyclic force frequency increased linearly with cutting speed and decreased inversely with feed rate. The cutting force increased with the feed rate and depth of cut at constant cutting speed due to the large volume of material being removed. The increase in cutting force with increasing cutting speed from 10 to 16 and 57 to 75 m/min was attributed to the strain rate hardening at low and high strain rates, respectively. The decrease in cutting force with increasing cutting speed outside these speed ranges was due to the thermal softening of the material. The amplitude variation of the high-frequency cyclic force associated with the segmented chip formation increased with increasing depth of cut and feed rate, and decreased with increasing cutting speed from 57 m/min except at the cutting speeds where harmonic vibration of the machine occurs.

403 citations


Journal ArticleDOI
TL;DR: In this article, minimum quantity lubrication (MQL) was provided with a spray of air and vegetable oil to reduce the cutting zone temperature enabling favorable chip formation and chip-tool interaction.

402 citations


Journal ArticleDOI
TL;DR: In this paper, the state of the art in the field of laser machining of structural ceramics is presented, focusing on experimental and computational approaches in understanding physical nature of the complex phenomena.
Abstract: Outstanding mechanical and physical properties like high thermal resistance, high hardness and chemical stability have encouraged use of structural ceramics in several applications. The brittle and hard nature of these ceramics makes them difficult to machine using conventional techniques and damage caused to the surface while machining affects efficiency of components. Laser machining has recently emerged as a potential technique for attaining high material removal rates. This review paper aims at presenting the state of the art in the field of laser machining of structural ceramics and emphasizes on experimental and computational approaches in understanding physical nature of the complex phenomena.

401 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 with carbide tool has been investigated and the results indicated that in general, coconut oil performed better than the other two cutting fluids in reducing the tool wear.

388 citations


Journal ArticleDOI
TL;DR: In this paper, the size effect in micromilling hardened tool steel was observed by studying the effect of the ratio of undeformed chip thickness to the cutting edge radius on process performance, and how this ratio drove the specific cutting force, surface finish and burr formation in micro-scale machining.
Abstract: The market for freeform and high quality microdies and moulds made of steel is predicted to experience a phenomenal growth in line with the demand for microsystems. However, micromachining of hardened steel is a challenge due to unpredictable tool life and likely differences in process mechanism compared to macro-scale machining. This paper presents an investigation of the size effect in micromilling of H13 hardened tool steel. In this case, the size effect in micromilling hardened tool steel was observed by studying the effect of the ratio of undeformed chip thickness to the cutting edge radius on process performance. The paper explores how this ratio drives the specific cutting force, surface finish and burr formation in micro-scale machining. In addition, the effect of different microend mill geometry on product quality was explored. The paper provides a valuable insight into optimum micro-scale machining conditions for obtaining the best surface finish and minimizing burr size.

306 citations


Journal ArticleDOI
TL;DR: In this paper, the machinability of superalloy, Inconel 718 during high speed turning using tungsten carbide insert (K20) tool was investigated.

263 citations


Journal ArticleDOI
TL;DR: In this article, the influence of workpiece hardness and grinding parameters including wheel speed, feed rate and depth of cut have been studied on the basis of the grinding forces and surface quality properties to develop optimum grinding performances.
Abstract: Coolant is a term generally used to describe grinding fluids used for cooling and lubricating in grinding process. The main purposes of a grinding fluid can be categorized into lubrication, cooling, transportation of chips, cleaning of the grinding wheel and minimizing the corrosion. On the other hand, grinding fluids have negative influences on the working environment in terms of the health of the machine operator, pollution and the possibility of explosion (for oil). Furthermore, the cost of the grinding fluid, filtering and waste disposal of the metal working fluids is even higher than the tool cost and constitutes a great part of the total cost. Additionally, grinding fluids can not effectively penetrate into the contact zone, are health hazard and their consumption must be restricted. Generally, compared to other machining processes, grinding involves high specific energy. Major fraction of this energy is changed into heat, which makes harmful effect on the surface quality as well as the tool wear. Since there is no coolant lubricant to transfer the heat from the contact zone in dry grinding, surface damages are not preventable. Alternatives to current practices are getting more serious consideration in response to environmental and operational cost pressures. One attractive alternative is the minimum quantity lubrication (MQL) grinding or the near dry grinding (NDG). In near dry grinding an air–oil mixture called an aerosol is fed into the wheel-work contact zone. Compared to dry grinding, MQL grinding substantially enhances cutting performance in terms of increasing wheel life and improving the quality of the ground parts. In this research, the influences of workpiece hardness and grinding parameters including wheel speed, feed rate and depth of cut have been studied on the basis of the grinding forces and surface quality properties to develop optimum grinding performances such as cooling, lubrication, high ecological and environmental safety.

Journal ArticleDOI
TL;DR: In this paper, the surface roughness of Al-SiC (20 p) has been studied by turning the composite bars using coarse grade polycrystalline diamond (PCD) insert under different cutting conditions.

Journal Article
TL;DR: In this article, the T aguchi method is applied to find optimum process parameters for end milling while hard machining of hardened steel, and the results match closely with ANOV A and cutting speed is most influencing parameter.
Abstract: In this paper , T aguchi method is applied to find optimum process parameters for end milling while hard machining of hardened steel. A L 18 array , signal-to-noise ratio and analysis of variance (ANOV A) are applied to study performance characteristics of machining parameters (cutting speed, feed, depth of cut and width of cut) with consideration of surface finish and tool life. Chipping and adhesion are observed to be main causes of wear . Results obtained by T aguchi method match closely with ANOV A and cutting speed is most influencing parameter . Multiple regression equations are formulated for estimating predicted values of surface roughness and tool wear

Journal ArticleDOI
15 Jun 2009-Wear
TL;DR: In this article, the wear mechanisms of tungsten carbide (WC) drills during dry high speed drilling of quasi-isotropic woven graphite fiber epoxy composites were investigated.

Journal ArticleDOI
TL;DR: In this paper, a ploughing force model that takes the effect of elastic recovery into account is developed based on the interference volume between the tool and the workpiece, and the elastic recovery is identified with experimental scratch tests using a conical indenter.
Abstract: This paper investigates the mechanistic modeling of micro-milling forces, with consideration of the effects of ploughing, elastic recovery, run-out, and dynamics. A ploughing force model that takes the effect of elastic recovery into account is developed based on the interference volume between the tool and the workpiece. The elastic recovery is identified with experimental scratch tests using a conical indenter. The dynamics at the tool tip is indirectly identified by performing receptance coupling analysis through the mathematical coupling of the experimental dynamics with the analytical dynamics. The model is validated through micro end milling experiments for a wide range of cutting conditions.

Journal ArticleDOI
TL;DR: In this paper, an experimental investigation was conducted to determine the main EDM parameters which contribute to recast layer formation in Inconel 718 and found that the recast material was found to possess in-plane tensile residual stresses, as well as lower hardness and elastic modulus than the bulk material.
Abstract: Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present and are due in large part to the formation of the recast layer. An experimental investigation was conducted to determine the main EDM parameters which contribute to recast layer formation in Inconel 718. It was found that average recast layer thickness increased primarily with energy per spark, peak discharge current, and current pulse duration. Over the range of parameters tested, the recast layer was observed to be between 5 and 9 μm in average thickness, although highly variable in nature. The recast material was found to possess in-plane tensile residual stresses, as well as lower hardness and elastic modulus than the bulk material.

Journal ArticleDOI
TL;DR: In this article, the cutting performance of synthetic ester oil and vegetable and synthetic esters oil were compared on the basis of the surface quality properties that would be suitable for minimal quantity lubrication (MQL) applications.
Abstract: Titanium and its alloys are attractive materials due to their unique high strength–weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. The problems that arise during grinding of titanium alloys are attributed to the high specific energy and high grinding zone temperature. Significant progress has been made in dry and semidry machining recently, and minimal quantity lubrication (MQL) machining in particular has been accepted as a successful semidry application because of its environmentally friendly characteristics. A number of studies have shown that MQL machining can show satisfactory performance in practical machining operations. However, there has been few investigation of MQL grinding of special alloys like titanium alloys and the cutting fluids to be used in MQL grinding of these alloys. In this study, vegetable and synthetic esters oil are compared on the basis of the surface quality properties that would be suitable for MQL applications. The cutting performance of fluids is also evaluated using conventional wet (fluid) grinding of Ti–6Al–4V. As a result, synthetic ester oil is found to be optimal cutting fluids for MQL grinding of Ti–6Al–4V.

Journal ArticleDOI
TL;DR: In this paper, a neural network approach is presented for the prediction and control of surface roughness in a computer numerically controlled (CNC) lathe, which is a type of back-propagation.

Journal ArticleDOI
TL;DR: In this article, the influence of major operating parameters on the performance of micro-EDM of tungsten carbide was investigated with focus in obtaining quality micro-holes in both transistor and RC-type generators.

Journal ArticleDOI
TL;DR: In this paper, the effect of drill geometry and drilling conditions on tool life and hole quality was evaluated using an L12 Taguchi fractional factorial orthogonal array with analysis of variance (ANOVA).
Abstract: The paper details experimental results when drilling small holes (1.5 mm diameter cemented carbide drills with varying end point and helix geometry) in thin quasi-isotropic, unbacked carbon fibre reinforced plastic (CFRP) laminate (typical cutting time ∼0.4 s/hole). The study utilised an L12 Taguchi fractional factorial orthogonal array with analysis of variance (ANOVA) employed to evaluate the effect of drill geometry and drilling conditions on tool life and hole quality. Main effects plots and percentage contribution ratios (PCR) are detailed in respect of response variables and process control factors. More conventionally, tool wear and cutting force data are plotted/tabulated, together with micrographs of hole entry/exit condition and internal hole damage. Drill geometry and feed rate in general had the most effect on measured outputs. Thrust force was typically below 100 N at test cessation; however, drill wear progression effectively doubled the magnitude of force from test outset. Entry and exit delamination factors ( F d ) of ∼1.3 were achieved while the maximum number of drilled holes for a tool life criterion VB B max of ≤100 μm was 2900 holes using a stepped, uncoated drill with a feed rate of 0.2 mm/rev.

Journal ArticleDOI
TL;DR: In this article, the performance of a CBN tool during hard turning of 100Cr6-tempered steel was investigated using a series of long-duration wear tests to elucidate the cutting speed effects on the various tool wear forms.

Journal ArticleDOI
TL;DR: In this paper, a single crystalline silicon was plunge-cut using diamond tools at a low speed, and cross-sectional transmission electron microscopy and laser micro-Raman spectroscopy were used to examine the subsurface structure of the machined sample.
Abstract: Single crystalline silicon was plunge-cut using diamond tools at a low speed. Cross-sectional transmission electron microscopy and laser micro-Raman spectroscopy were used to examine the subsurface structure of the machined sample. The results showed that the thickness of the machining-induced amorphous layer strongly depends on the tool rake angle and depth of cut, and fluctuates synchronously with surface waviness. Dislocation activity was observed below the amorphous layers in all instances, where the dislocation density depended on the cutting conditions. The machining pressure was estimated from the micro-cutting forces, and a subsurface damage model was proposed by considering the phase transformation and dislocation behavior of silicon under high-pressure conditions.

Journal ArticleDOI
TL;DR: In this paper, the impact of various machining parameters on surface roughness and kerf taper ratio (TR) of an abrasive water jet machined surfaces of glass/epoxy composite laminate were studied.

Journal ArticleDOI
TL;DR: A review of the state-of-the-art research on surface integrity characterization, especially the characteristics of residual stresses produced in machining of hardened steels, titanium and nickel-based superalloys using the geometrically defined tools is presented in this paper.
Abstract: This paper presents a review of the state-of-art research on surface integrity characterization, especially the characteristics of residual stresses produced in machining of hardened steels, titanium and nickel-based superalloys using the geometrically defined tools. The interrelationships among residual stresses, microstructures, and tool-wear have been discussed. Current research on residual stress modeling and simulation using finite element method has been critically assessed. Also, the rationale for developing multi-scale simulation models for predicting residual stresses in machining has been presented. At the end, possible future work has been proposed.

Journal ArticleDOI
TL;DR: In this paper, the effects of depth of cut and machining time on machinability aspects such as machining force, power, specific cutting force, surface roughness and tool wear using second order mathematical models during turning of high chromium AISI D2 cold work tool steel with CC650, CC650WG and GC6050WH ceramic inserts.
Abstract: Hard turning with ceramic cutting tool has several benefits over grinding process such as elimination of coolant, reduced processing costs, improved material properties, reduced power consumption and increased productivity. Despite its significant advantages, hard turning can not replace all grinding due to lack of data concerning surface quality and tool wear and hence there is a need to study the machinability characteristics in high precision and high-hardened components. An attempt has been made in this paper to analyze the effects of depth of cut and machining time on machinability aspects such as machining force, power, specific cutting force, surface roughness and tool wear using second order mathematical models during turning of high chromium AISI D2 cold work tool steel with CC650, CC650WG and GC6050WH ceramic inserts. The experiments were planned as per full factorial design (FFD). From the parametric analysis, it is revealed that, the CC650WG wiper insert performs better with reference to surface roughness and tool wear, while the CC650 conventional insert is useful in reducing the machining force, power and specific cutting force.

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of various flowing abrasive-based micro-nano-machining processes is presented and a generalized mechanism of material removal for these processes is proposed.

Journal ArticleDOI
TL;DR: In this paper, the authors used the operational modal analysis (OMA) to predict machine dynamic stability lobes, and through experimental validation, it was shown that some depths of cut that are stable with standard stability layers become unstable with dynamic stability layers.
Abstract: The stability of high-speed machining operations determines the reliability of machine tools and the quality of machined parts. Chatter-free cutting conditions are difficult to predict as they require accurately estimated dynamic modal parameters. A spectrogram analysis and impact tests for different configurations of the machine tools were conducted to compare the modal parameters at 0 rpm tests and during machining tests. Variations of between 2% and 8% were observed for the natural frequencies and between 2 and 10 times for the damping ratios. The operational modal analysis (OMA) is considered as a powerful tool for dynamic modal parameter estimations during machining operations. A complete methodology for applying this technique for machining operations was detailed. It was demonstrate how the OMA can be industrially exploited. The proposed approach was successfully applied during the high-speed machining of the 7075-T6 aluminum alloy to extract machine-tool parameters. Two different numerical approaches were used: the autoregressive moving average method (ARMA) and the least square complex exponential method (LSCE), both of which generated similar results. The dynamic parameters found using the operational modal analysis were used to predict machine dynamic stability lobes, and through experimental validation, it was shown that some depths of cut that are stable with standard stability lobes become unstable with dynamic stability lobes.


Journal ArticleDOI
TL;DR: An experimental study to investigate the effects of cutting parameters on finish and power consumption by employing Taguchi techniques found a significant effect of cutting speed on the surface roughness andPower consumption, while the other parameters did not substantially affect the responses.
Abstract: The present paper outlines an experimental study to investigate the effects of cutting parameters on finish and power consumption by employing Taguchi techniques. The high speed machining of AISI 1045 using coated carbide tools was investigated. A combined technique using orthogonal array and analysis of variance was employed to investigate the contribution and effects of cutting speed, feed rate and depth of cut on three surface roughness parameters and power consumption. The results showed a significant effect of cutting speed on the surface roughness and power consumption, while the other parameters did not substantially affect the responses. Thereafter, optimal cutting parameters were obtained.

Journal ArticleDOI
TL;DR: The efficacy of two different machine learning classification methods, Bayesian networks and artificial neural networks, for predicting surface roughness in high-speed machining are shown.
Abstract: Machine tool automation is an important aspect for manufacturing companies facing the growing demand of profitability and high quality products as a key for competitiveness. The purpose of supervising machining processes is to detect interferences that would have a negative effect on the process but mainly on the product quality and production time. In a manufacturing environment, the prediction of surface roughness is of significant importance to achieve this objective. This paper shows the efficacy of two different machine learning classification methods, Bayesian networks and artificial neural networks, for predicting surface roughness in high-speed machining. Experimental tests are conducted using the same data set collected in our own milling process for each classifier. Various measures of merit of the models and statistical tests demonstrate the superiority of Bayesian networks in this field. Bayesian networks are also easier to interpret that artificial neural networks.