scispace - formally typeset
Search or ask a question

Showing papers on "Machining published in 2019"


Journal ArticleDOI
TL;DR: In this article, a well-planned orthogonal array L27 was used in the electrical discharge drilling of Titanium alloy (Grade-5) for the experimentation, discharge current, pulse on time, pulse off time and dielectric pressure have been selected as input process parameters and hole circularity and hole taper as output parameters.

287 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive analysis of literature pertaining to ecological trends in machining processes of difficult-to-cut materials (e.g. hard steels, Ti-based alloys, Ni based alloys) has been performed.

260 citations


Journal ArticleDOI
TL;DR: Experimental results have shown that the proposed predictive modeling approach is capable of predicting the surface roughness of 3D printed components with high accuracy.
Abstract: Additive manufacturing (AM), also known as 3D printing, has been increasingly adopted in the aerospace, automotive, energy, and healthcare industries over the past few years. While AM has many advantages over subtractive manufacturing processes, one of the primary limitations of AM is surface integrity. To improve the surface integrity of additively manufactured parts, a data-driven predictive modeling approach to predicting surface roughness in AM is introduced. Multiple sensors of different types, including thermocouples, infrared temperature sensors, and accelerometers, are used to collect temperature and vibration data. An ensemble learning algorithm is introduced to train the predictive model of surface roughness. Features in the time and frequency domains are extracted from sensor-based condition monitoring data. A subset of these features is selected to improve computational efficiency and prediction accuracy. The predictive model is validated using the condition monitoring data collected from a set of AM tests conducted on a fused filament fabrication (FFF) machine. Experimental results have shown that the proposed predictive modeling approach is capable of predicting the surface roughness of 3D printed components with high accuracy.

226 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focused on the development of nano-MQL by adding hBN nanoparticles compared to pure MQL and dry machining in turning of Inconel 625.

207 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed review and discussion of the machinability of carbon fiber reinforced polymer (CFRP) composites including chip removal mechanisms, cutting force, tool wear, surface roughness, delamination and the characteristics of uncut fibres is presented.
Abstract: Carbon fibre reinforced polymer (CFRP) composites have excellent specific mechanical properties, these materials are therefore widely used in high-tech industries like the automobile and aerospace sectors. The mechanical machining of CFRP composites is often necessary to meet dimensional or assembly-related requirements; however, the machining of these materials is difficult. In an attempt to explore this issue, the main objective of the present paper is to review those advanced cutting tools and technologies that are used for drilling carbon fibre reinforced polymer composites. In this context, this paper gives a detailed review and discussion of the following: (i) the machinability of CFRP including chip removal mechanisms, cutting force, tool wear, surface roughness, delamination and the characteristics of uncut fibres; (ii) cutting tool requirements for CFRP machining; and (iii) recent industrial solutions: advanced edge geometries of cutting tools, coatings and technologies. In conclusion, it can be stated that advanced geometry cutting tools are often necessary in order to effectively and appropriately machine required quality features when working with CFRP composites.

200 citations


Journal ArticleDOI
TL;DR: The current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control are dealt with.

192 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works and an understanding of the future directions in the field.
Abstract: For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this paper aims to provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works, and an understanding of the future directions in the field. The research works are organised into two operation categories, low material removal rate (MRR) and high MRR, according their machining properties, and the research topics are reviewed and highlighted separately. Then, a set of statistical analysis is carried out in terms of published years and countries. Towards an applicable robotic machining, the future trends and key research points are identified at the end of this paper.

181 citations


Journal ArticleDOI
TL;DR: In this article, an attempt has been made to evaluate the effectiveness of two cooling and lubrication techniques namely cryogenic cooling and hybrid nanoadditive-based minimum quantity lubrication (MQL).
Abstract: Owing to superior physio-chemical characteristics, titanium alloys are widely adopted in numerous fields such as medical, aerospace, and military applications. However, titanium alloys have poor machinability due to its low thermal conductivity which results in high temperature during machining. Numerous lubrication and cooling techniques have already been employed to reduce the harmful environmental footprints and temperature elevation and to improve the machining of titanium alloys. In this current work, an attempt has been made to evaluate the effectiveness of two cooling and lubrication techniques namely cryogenic cooling and hybrid nanoadditive–based minimum quantity lubrication (MQL). The key objective of this experimental research is to compare the influence of cryogenic CO2 and hybrid nanofluid–based MQL techniques for turning Ti–6Al–4V. The used hybrid nanofluid is alumina (Al2O3) with multi-walled carbon nanotubes (MWCNTs) dispersed in vegetable oil. Taguchi-based L9 orthogonal-array was used for the design of the experiment. The design variables were cutting speed, feed rate, and cooling technique. Results showed that the hybrid nanoadditives reduced the average surface roughness by 8.72%, cutting force by 11.8%, and increased the tool life by 23% in comparison with the cryogenic cooling. Nevertheless, the cryogenic technique showed a reduction of 11.2% in cutting temperature compared to the MQL-hybrid nanofluids at low and high levels of cutting speed and feed rate. In this regard, a milestone has been achieved by implementing two different sustainable cooling/lubrication techniques.

170 citations


Journal ArticleDOI
TL;DR: In this article, the state of the art in the investigation into ultra-precision machining characteristics of micro-structured functional surfaces with a focus on their typical advanced applications was reviewed.
Abstract: Micro-structured functional surfaces have achieved widespread applications in various advanced scientific, technological, industrial, and engineered fields due to their excellent performances, which are vitally limited by their feasible fabrication. Currently, ultra-precision machining, typically including ultra-precision diamond turning, ultra-precision diamond milling, ultra-precision diamond scratching, ultra-precision grinding, and ultra-precision polishing, is developed as a very-promising solution for the micro-structured functional surface fabrication with high quality, high efficiency, high flexibility, and low cost. Therefore, this paper aims to briefly review the current state of the art in the investigation into ultra-precision machining characteristics of micro-structured functional surfaces with a focus on their typical advanced applications as the significant achievements of their ultra-precision machining fabrication, discuss the key challenges, and further provide new insights into ultra-precision machining of micro-structured functional surfaces for the future research and their further advanced applications.

154 citations


Journal ArticleDOI
TL;DR: In this paper, the optimization of micro drilling process is carried out in stainless steel by considering certain metrics like feed rate, voltage and duty ratio, and the geometric characteristics to drill the tool depends on response parameters like overcut, removal rate of material and conicity.
Abstract: The electrochemical micromachining in non-conventional machining which suffers from process control in micro level. In addition, the work material i.e. stainless steel provides high strength, high toughness and adherence to tool material, hence machining of such material is arduous. However, the use of stainless steel offers its availability in the field of aerospace fuel injection and orthodontic application, since it possess superior qualities. In this paper, the optimization of micro drilling process is carried out in stainless steel by considering certain metrics like feed rate, voltage and duty ratio. The geometric characteristics to drill the tool depends on response parameters like overcut, removal rate of material and conicity. Such parameter determines both the geometric and machining characteristics of the drill bit. The study is evaluated to observe the effect of response and duty ratio parameters such as material removal rate (MRR), machining time and overcut. Further, the conicity is analyzed using VMS images. Finally, the proposed work establishes duty cycle in pulsed electrochemical micromachining domain of hard materials and tests its performance.

152 citations


Journal ArticleDOI
TL;DR: In this paper, the cutting force, specific energy, temperature, surface quality (i.e. surface roughness), and material removal rate under the impingement of liquid nitrogen (LN2) as mono-jet and dual-jets were investigated.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an informative literature survey of the research done in the field of conventional and non-conventional machining of CMCs with a main focus on critically evaluate how different machining techniques affect the machined surfaces.
Abstract: Ceramic Matrix Composites (CMCs) are currently an increasing material choice for several high value and safety-critical components, fact that has recently originated the need of understanding the effect of several machining processes. Due to the complex nature of CMCs - i.e. heterogeneous structure, anisotropic thermal and mechanical behaviour and generally the hard nature of at least one of the constituents (e.g. fibre or matrix) - machining become extremely challenging as the process can yield high mechanical and thermal loads. Furthermore, the orthotropic, brittle and heterogeneous nature of CMCs result in different material removal mechanisms which lead to unique surface defects. Hence, this review paper attempts to provide an informative literature survey of the research done in the field of conventional and non-conventional machining of CMCs with a main focus on critically evaluate how different machining techniques affect the machined surfaces. This is achieved by exploring and recollecting the different material characterisation techniques currently used to observe and quantify the mechanical and thermal surface and subsurface damages and highlight their governing removal mechanisms.

Journal ArticleDOI
TL;DR: This guideline shows the physical, tribological, and heat transfer mechanisms associated with employing such cooling/lubrication approaches and their effects on different machining quality characteristics such as tool wear, surface integrity, and cutting forces.
Abstract: The cutting fluid is significant in any metal cutting operation, for cooling the cutting tool and the surface of the workpiece, by lubricating the tool-workpiece interface and removing chips from the cutting zone. Recently, many researchers have been focusing on minimum quantity lubrication (MQL) among the numerous methods existing on the application of the coolant as it reduces the usage of coolant by spurting a mixture of compressed air and cutting fluid in an improved way instead of flood cooling. The MQL method has been demonstrated to be appropriate as it fulfills the necessities of ‘green’ machining. In the current study, firstly, various lubrication methods were introduced which are used in machining processes, and then, basic machining processes used in manufacturing industries such as grinding, milling, turning, and drilling have been discussed. The comprehensive review of various nanofluids (NFs) used as lubricants by different researchers for machining process is presented. Furthermore, some cases of utilizing NFs in machining operations have been reported briefly in a table. Based on the studies, it can be concluded that utilizing NFs as coolant and lubricant lead to lower tool temperature, tool wear, higher surface quality, and less environmental dangers. However, the high cost of nanoparticles, need for devices, clustering, and sediment are still challenges for the NF applications in metalworking operations. At last, the article identifies the opportunities for using NFs as lubricants in the future. It should be stated that this work offers a clear guideline for utilizing MQL and MQL-nanofluid approaches in machining processes. This guideline shows the physical, tribological, and heat transfer mechanisms associated with employing such cooling/lubrication approaches and their effects on different machining quality characteristics such as tool wear, surface integrity, and cutting forces.

Journal ArticleDOI
TL;DR: In this article, a detailed review of the progress of drilling of carbon fiber reinforced polymers with special attention given to carbon fiber-reinforced polymers is presented, where the role of drilling parameters and composite properties on the drilling-induced damage in machined holes is discussed.
Abstract: Drilling is considered as one of the most challenging problems in aerospace structures where stringent tolerances are required for fasteners such as rivets and bolts to join the mating parts for final assembly. Fiber-reinforced polymers are widely used in aeronautical applications due to their superior properties. One of the major challenges in machining such polymers is the poor drilled-hole quality which reduces the strength of the composite and leads to part rejection at the assembly stage. In addition, rapid tool wear due to the abrasive nature of composites requires frequent tool change which results in high tooling and machining costs. This review intended to give in-depth details on the progress of drilling of fiber-reinforced polymers with special attention given to carbon fiber–reinforced polymers. The objective is to give a comprehensive understanding of the role of drilling parameters and composite properties on the drilling-induced damage in machined holes. Additionally, the review examines the drilling process parameters and its optimization techniques, and the effects of dust particles on human health during the machining process. This review will provide scientific and industrial communities with advantages and disadvantages through better drilled-hole quality inspection.

Journal ArticleDOI
TL;DR: In this article, the effects of build orientation, surface roughness, and hot-isostatic pressing are linked to the fatigue properties highlighting microstructure, defects, and failure mechanisms.

Journal ArticleDOI
TL;DR: In this article, a new hybrid cryogenic MQL cooling/lubrication technique is proposed for end milling Ti-6Al-4V using coated solid carbide tools.

Journal ArticleDOI
TL;DR: A detailed literature survey on the conventional and non-conventional machining of metal matrix composites with the primary focus on the aspects related to workpiece surface integrity is presented in this article.
Abstract: Metal matrix composites (MMCs), as advanced substitutes of monolithic metallic materials, are currently getting an increasing trend of research focus as well as industrial applications for demanding applications such as aerospace, nuclear and automotive because of their enhanced mechanical properties and relative lightweight. Nevertheless, machining of MMC materials remains a challenging task as a result of their structural heterogeneity which leads to deterioration of the machined surface integrity and rapid tool wear. While most of the research was focused on testing and analytical/numerical investigations of the tool wear, limited work was focused on machined surface integrity of MMCs. This paper presents a detailed literature survey on the conventional and non-conventional machining of metal matrix composites with the primary focus on the aspects related to workpiece surface integrity. The contribution of material mechanical and microstructural properties as well as the material removal mechanism upon the quality of workpiece surfaces/subsurface are discussed along with their influences on the fatigue performance of machined part.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Taguchi method for determining number of experiment while variance analysis (ANOVA) deals with which parameter/s is/are effective on output to reduce tool wear and tool breakage.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the effect of the addition of solid lubricant in vegetal base oil applied by MQL (Minimum Quantity of Lubricant), when turning Inconel 718, with whisker-reinforced ceramic cutting tools (Al2O3 + SiCw).

Journal ArticleDOI
TL;DR: In this article, the influence of post treatments on the fatigue properties of 316L stainless steel produced by laser powder bed fusion was investigated, and the results showed that the fatigue behavior of machined samples with and without stress relief heat treatment exceeds that of conventionally manufactured 316L.

Journal ArticleDOI
TL;DR: In this article, the influence of pure cooling-lubrication (C/L) agents to reduce friction at faying surfaces can ameliorate overall machinability.
Abstract: In machining of soft alloys, the sticky nature of localized material instigated by tool-work interaction exacerbates the tribological attitude and ultimately demeans it machinability. Moreover, the endured severe plastic deformation and originated thermal state alter the metallurgical structure of machined surface and chips. Also, the used tool edges are worn/damaged. Implementation of cooling-lubrication (C/L) agents to reduce friction at faying surfaces can ameliorate overall machinability. That is why, this paper deliberately discussed the influence of pure C/L methods, i.e., such as dry cutting (DC) and nitrogen cooling (N2), as well as hybrid C/L strategies, i.e., nitrogen minimum quantity lubrication (N2MQL) and Ranque–Hilsch vortex tube (RHVT) N2MQL conditions in turning of Al 7075-T6 alloy, respectively. With respect to the variation of cutting speed and feed rate, at different C/Ls, the surface roughness, tool wear, and chips are studied by using SEM and 3D topographic analysis. The mechanism of heat transfer by the cooling methods has been discussed too. Furthermore, the new chip management model (CMM) was developed under all C/L conditions by considering the waste management aspects. It was found that the R-N2MQL has the potential to reduce the surface roughness up to 77% and the tool wear up to 118%. This significant improvement promotes sustainability in machining industry by saving resources. Moreover, the CMM showed that R-N2MQL is more attractive for cleaner manufacturing system due to a higher recyclability, remanufacturing, and lower disposal of chips.

Journal ArticleDOI
TL;DR: High material removal rates can be achieved by selecting analytically predicted stable depth of cuts and spindle speeds in robotic milling of Aluminum parts by selecting pose dependent low frequency robot modes.
Abstract: Industrial robots are desired to be used in milling light but large aerospace parts due to easier set-up and portability than large machine tools. However, robots are significantly less stiff than the machine tools, hence they cannot be used in all machining applications. This paper presents dynamics of robotic milling. The structural dynamics of an articulated manipulator with a spindle and a tool are modeled. The dynamic milling forces are applied on the robot structure which has strong cross coupling terms. The stability of the resulting system is analyzed using semi-discrete time and frequency domain methods. The predicted stability charts are experimentally validated in milling of Aluminum and Titanium parts. It is shown that the pose-dependent modes of the robot structure are all at low frequencies, and they are damped out by the machining process at high spindle speeds. Only the pose independent spindle modes cause chatter in high-speed milling, hence high material removal rates can be achieved by selecting analytically predicted stable depth of cuts and spindle speeds in robotic milling of Aluminum parts. In low speed milling of Titanium parts however, the pose dependent low frequency robot modes chatter.

Journal ArticleDOI
10 Apr 2019
TL;DR: Feng et al. as discussed by the authors reviewed the development of atomic and close to atomic scale manufacturing (ACSM) based on atomic level operation modes in subtractive, transformative, and additive manufacturing processes.
Abstract: Human beings have witnessed unprecedented developments since the 1760s using precision tools and manufacturing methods that have led to ever increasing precision, from millimeter to micrometer, to single nanometer, and to atomic levels. Researchers led by Prof. Fengzhou Fang from Tianjin University/University College Dublin have recently reviewed the development Atomic and Close to atomic Scale Manufacturing (ACSM) based on atomic level operation modes in subtractive, transformative, and additive manufacturing processes. Fang has formally proposed three phases of manufacturing advances: • Manufacturing I: Craft based manufacturing by hand, as in the Stone, Bronze, and Iron Ages, in which manufacturing precision is at the millimeter scale. • Manufacturing II: Precision controllable manufacturing using machinery where the material removal, transformation, and addition scales are reduced from millimeters to micrometers and nanometers. • Manufacturing III: Manufacturing objectives and processes directly focused on atoms, spanning the macro through the micro to the nanoscale where manufacturing is based on removal, transformation, and addition at the atomic scale, namely, atomic and close to atomic scale manufacturing. In this review article, the authors systematically analysed literatures in area of subtractive manufacturing including ultra precision machining, high energy beam machining, atomic layer etching, atomic force microscope nanomachining, where atomic wide line was achieved by focused electron beam sculpture based on 2D materials, such as transition metal dichalcogenides. Sub nanometer finish can be achieved with ultra precision polishing and atomic layer etching, where defects free and single atomic layer removal are still not possible. Atomic scale additive manufacturing, featured with macromolecular assembly with feedstocks, such as DNAs, proteins and peptides, represents atomic precision manufacturing of biological machines. Atomic scale transformative manufacturing, such as using Scanning Tunnelling Microscopy, Atomic Force Microscopy and Scanning Transmission Microscopy, has demonstrated capability for operation of single atoms. They also summarized the metrology technologies for ACSM and current applications. Today, the famous Moore’s law is approaching its physical limit. Computer microprocessors, such as the recently announced A12 Bionic chip and Kirlin 980, use a 7 nm manufacturing process with 6.9 billion transistors in a centimeter square chip. Such limits have been pushed to a 5 nm node and even a 3 nm node, which represents a few tens of atoms. Human beings are already stepping into the atomic era. Meanwhile, human society is facing unprecedented global challenges from depleting natural resources, pollution, climate change, clean water, and poverty.What shall we do? Such challenges are directly linked to the physical characteristics of our current technology base for producing energy and material products. According to the authors, it is the time to start changing both products and means of production via ACSM, which includes all of the steps necessary to convert raw materials, components, or parts into products designed to meet users' specifications. They believe research should focus on extensive study of fundamental mechanisms of ACSM, development of new functional devices, exploration of ACSM of extensive materials and amplifying throughput for future production.

Journal ArticleDOI
TL;DR: This paper introduces a pose optimization method for the milling robot when converting a five-axis CNC tool path to a commercial six-axis industrial robot trajectory, taking advantage of a redundant degree of freedom.
Abstract: Industrial robot provides an optimistic alternative of traditional CNC machine tool due to its advantages of large workspace, low cost and great flexibility However, the low posture-dependent stiffness deteriorates the machining accuracy in robotic milling tasks To increase the stiffness, this paper introduces a pose optimization method for the milling robot when converting a five-axis CNC tool path to a commercial six-axis industrial robot trajectory, taking advantage of a redundant degree of freedom First, considering the displacements of at least three points on the end effector of the robot, a new frame-invariant performance index is proposed to evaluate the stiffness of the robot at a certain posture Then, by maximizing this index, a one-dimensional posture optimization problem is formulated in consideration of the constraints of joint limits, singularity avoidance and trajectory smoothness The problem is solved by a simple discretization search algorithm Finally, the performance index and the robot trajectory optimization algorithm are validated by simulations and experiments on an industrial robot, showing that the machining accuracy can be efficiently improved by the proposed method

Journal ArticleDOI
TL;DR: In this paper, the surface characteristics of as-built specimens manufactured by selective laser melting (SLM) are presented, where improvement of the surface can be achieved by post-processing operations.
Abstract: Metal additive manufacturing is an emerging method to fabricate components used in the aerospace and biomedical industries. However, one of the significant challenges in this approach is the surface quality of the fabricated components. After metal additive manufacturing operations, post-processing is essential to meet the expected surface quality. This study presents the surface characteristics of as-built specimens manufactured by selective laser melting (SLM), where improvement of the surface can be achieved by post-processing operations. The post-processing operations in focus are finish machining (FM), vibratory surface finishing (VSF) and drag finishing (DF) operations. Surface topography, average surface roughness, microhardness, microstructure and XRD analysis have been carried out to examine the surface characteristics resulting from the post-processing operations. This study demonstrates that the drag finishing operation can be used for post-processing to meet the surface quality requirement of SLM manufactured parts.

Journal ArticleDOI
TL;DR: In this article, the effects of eco-friendly cutting conditions on machining performance in the milling of Inconel X-750 superalloy were investigated, and the best results on all performance characteristics were obtained under nanofluid cutting conditions.

Journal ArticleDOI
TL;DR: In this article, the effects of these cutting environments have been studied by comparing the tool wear, cutting forces, work surface defects, surface finish, and chip underside surfaces, and overall the cryogenic cooling environment has been found to be the best mode for the machining of the Nimonic 90 alloy.

Journal ArticleDOI
TL;DR: In this paper, a vegetable-based cutting fluid with minimum quantity cutting fluid (MQCF) was used for turning hardened AISI H-13 steel, and the results showed that cutting force, feed force, coefficient of friction and CLA surface roughness of workpiece were reduced using optimized MQCF process parameters.

Journal ArticleDOI
TL;DR: In this paper, the authors used advanced cooling lubrication, i.e., nanofluid assistance, besides dry and flood cooling, during machining and used as the basis for sustainability assessment.
Abstract: The constant pressure on the manufacturers to innovate and implement sustainable processes has triggered researching on machining with low carbon footprint, minimum energy consumption by machine tools, and improved products at the lowest cost—this is exactly done in this paper. Herein, the advanced cooling lubrication, i.e., nanofluid assistance, besides dry and flood cooling, during machining has been experimented, and used as the basis for sustainability assessment. This assessment is carried out in respect of surface quality and power consumption as well as the impact on environment, cost of machining, management of waste, and finally the safety and health issues of operators. For a better sustainability, a systematic optimization has been performed. In addition, the solution for an improved machinability has been proposed along with the statistically verified mathematical models of machining responses. Results showed that the nanofluid minimum quantity lubrication showed the most sustainable performance with a total weighted sustainability index 0.7, and it caused the minimum surface roughness and power consumption. The highest desirable (desirability = 0.9050) optimum results are the cutting speed of 116 m/min, depth of cut 0.25 mm, and feed rate of 0.06 mm/rev. Furthermore, a lower feed rate is suggested for better surface quality while for reduced power consumption the lower control factors are better.

Journal ArticleDOI
TL;DR: The machinability of superalloy Inconel-800 has been investigated by performing different turning tests under MQL conditions, and MQL was found to be a better cooling technique when compared to the dry and the flood cooling.
Abstract: The manufacturing of parts from nickel-based superalloy, such as Inconel-800 alloy, represents a challenging task for industrial sites. Their performances can be enhanced by using a smart cutting fluid approach considered a sustainable alternative. Further, to innovate the cooling strategy, the researchers proposed an improved strategy based on the minimum quantity lubrication (MQL). It has an advantage over flood cooling because it allows better control of its parameters (i.e., compressed air, cutting fluid). In this study, the machinability of superalloy Inconel-800 has been investigated by performing different turning tests under MQL conditions, where no previous data are available. To reduce the numerous numbers of tests, a target objective was applied. This was used in combination with the response surface methodology (RSM) while assuming the cutting force input (Fc), potential of tool wear (VBmax), surface roughness (Ra), and the length of tool–chip contact (L) as responses. Thereafter, the analysis of variance (ANOVA) strategy was embedded to detect the significance of the proposed model and to understand the influence of each process parameter. To optimize other input parameters (i.e., cutting speed of machining, feed rate, and the side cutting edge angle (cutting tool angle)), two advanced optimization algorithms were introduced (i.e., particle swarm optimization (PSO) along with the teaching learning-based optimization (TLBO) approach). Both algorithms proved to be highly effective for predicting the machining responses, with the PSO being concluded as the best amongst the two. Also, a comparison amongst the cooling methods was made, and MQL was found to be a better cooling technique when compared to the dry and the flood cooling.