scispace - formally typeset
Search or ask a question
Topic

Machining

About: Machining is a research topic. Over the lifetime, 121368 publications have been published within this topic receiving 1005925 citations. The topic is also known as: subtractive manufacturing & machining process.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the past contributions of CIRP in these areas are reviewed and an up-to-date comprehensive survey of sensor technologies, signal processing, and decision making strategies for process monitoring is provided.

1,074 citations

Journal ArticleDOI
TL;DR: In this article, the benefits of non-destructive testing, online monitoring and in situ machining are discussed, and strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested.
Abstract: Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to low and medium complexity parts. A variety of components have been successfully manufactured with this process, including Ti–6Al–4V spars and landing gear assemblies, aluminium wing ribs, steel wind tunnel models and cones. Strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested. Finally, the benefits of non-destructive testing, online monitoring and in situ machining are discussed.

1,051 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the short fiber (02 mm to 04 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance.

1,016 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of machining induced surface integrity in titanium and nickel alloys and conclude that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments.
Abstract: Titanium and nickel alloys represent a significant metal portion of the aircraft structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels, surface integrity is one of the most relevant parameters used for evaluating the quality of finish machined surfaces. The residual stresses and surface alteration (white etch layer and depth of work hardening) induced by machining of titanium alloys and nickel-based alloys are very critical due to safety and sustainability concerns. This review paper provides an overview of machining induced surface integrity in titanium and nickel alloys. There are many different types of surface integrity problems reported in literature, and among these, residual stresses, white layer and work hardening layers, as well as microstructural alterations can be studied in order to improve surface qualities of end products. Many parameters affect the surface quality of workpieces, and cutting speed, feed rate, depth of cut, tool geometry and preparation, tool wear, and workpiece properties are among the most important ones worth to investigate. Experimental and empirical studies as well as analytical and Finite Element modeling based approaches are offered in order to better understand machining induced surface integrity. In the current state-of-the-art however, a comprehensive and systematic modeling approach based on the process physics and applicable to the industrial processes is still missing. It is concluded that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments, while explaining the effects of many parameters, for machining of titanium alloys and nickel-based alloys.

986 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method for machining aeroengine alloys with improved hardness, such as cubic boron nitride (CBN) tools, for high speed continuous machining.

970 citations


Network Information
Related Topics (5)
Surface roughness
70.1K papers, 1M citations
85% related
Welding
206.5K papers, 1.1M citations
83% related
Microstructure
148.6K papers, 2.2M citations
82% related
Coating
379.8K papers, 3.1M citations
80% related
Alloy
171.8K papers, 1.7M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,005
20226,535
20214,178
20208,620
20199,321
20189,283