scispace - formally typeset
Search or ask a question
Topic

Magmatism

About: Magmatism is a research topic. Over the lifetime, 5291 publications have been published within this topic receiving 211150 citations.


Papers
More filters
Book
06 Jun 1989

2,655 citations

Journal ArticleDOI
TL;DR: In this article, a model for the Cenozoic development of the region of SE Asia and the SW Pacific is presented and its implications are discussed, accompanied by computer animations in a variety of formats.

2,272 citations

Journal ArticleDOI
01 Jul 1992-Geology
TL;DR: The A-type granitoids can be divided into two chemical groups as mentioned in this paper : oceanic-island basalts and island-arc basalts, and these two types have very different sources and tectonic settings.
Abstract: The A-type granitoids can be divided into two chemical groups. The first group (A1) is characterized by element ratios similar to those observed for oceanic-island basalts. The second group (A2) is characterized by ratios that vary from those observed for continental crust to those observed for island-arc basalts. It is proposed that these two types have very different sources and tectonic settings. The A1 group represents differentiates of magmas derived from sources like those of oceanic-island basalts but emplaced in continental rifts or during intraplate magmatism. The A2 group represents magmas derived from continental crust or underplated crust that has been through a cycle of continent-continent collision or island-arc magmatism.

2,043 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of pre-emptive and preemptive gradients in T and O 2 in a variety of compositionally zoned ash flow tuffs.
Abstract: Every large eruption of nonbasaltic magma taps a magma reservoir that is thermally and compositionally zoned. Most small eruptions also tap parts of heterogeneous and evolving magmatic systems. Several kinds of compositionally zoned ash flow tuffs provide examples of preemptive gradients in T and ƒO2, in chemical and isotopic composition, and in the variety, abundance, and composition of phenocrysts. Such gradients help to constrain the mechanisms of magmatic differentiation operating in each system. Roofward decreases in both T and phenocryst content suggest water concentration gradients in magma chambers. Wide compositional gaps are common features of large eruptions, proving the existence of such gaps in a variety of magmatic systems. Nearly all magmatic systems are ‘fundamentally basaltic’ in the sense that mantle-derived magmas supply heat and mass to crustal systems that evolve a variety of compositional ranges. Feedback between crustal melting and interception of basaltic intrusions focuses and amplifies magmatic anomalies, suppresses basaltic volcanism, produces and sustains crustal magma chambers, and sometimes culminates in large-scale diapirism. Degassing of basalt crystallizing in the roots of these systems provides a flux of He, CO2, S, halogens, and other components, some of which may influence chemical transport in the overlying, more silicic zones. Basaltic magmas become andesitic by concurrent fractionation and assimilation of partial melts over a large depth range during protracted upward percolation in a plexus of crustal conduits. Zonation in the andesitic-dacitic compositional range develops subsequently within magma chambers, primarily by crystal fractionation. Some dacitic and rhyolitic liquids may separate from less-silicic parents by means of ascending boundary layers along the walls of convecting magma chambers. Many rhyolites, however, are direct partial melts of crustal rocks, and still others fractionate from crystal-rich intermediate parents. The zoning of rhyolitic magma is accomplished predominantly by liquid state thermodiffusion and volatile complexing; liquid structural gradients may be important, and thermal gradients across magma chamber boundary layers are critical. Intracontinental silicic batholiths form where extensional tectonism favors coalescence of crustal partial melts instead of hybridization with the intrusive basaltic magma. Cordilleran batholiths, however, result from prolonged diffuse injection of the crust by basalt that hybridizes, fractionates, and preheats the crust with pervasive mafic to intermediate forerunners, culminating in large-scale diapiric mobilization of partially molten zones from which granodioritic magmas separate. Much of the variability among magmatic systems probably reflects the depth variation of relative rates of transport of magma, heat, and volatile components, as controlled in turn by the orientation and relative magnitudes of principal stresses in the lithosphere, the thickness and composition of the affected crust, and variations in the rate and longevity of basaltic magma supply. Extension of the lithosphere may reduce the susceptibility of basaltic magmas to hybridization in the crust, but it can also enhance the role of mantle-derived volatiles in chemical transport.

1,448 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a model that suggests that oceanic lithosphere detaches from continental lithosphere during continental collision (slab breakoff), allowing an explanation of syn- to post-collisional magmatism and metamorphism.

1,399 citations


Network Information
Related Topics (5)
Continental crust
11.1K papers, 677.5K citations
96% related
Zircon
23.7K papers, 786.6K citations
94% related
Subduction
22.4K papers, 1.1M citations
93% related
Mantle (geology)
26.1K papers, 1.3M citations
93% related
Lithosphere
14.5K papers, 723.8K citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023397
2022809
2021343
2020278
2019258
2018220