scispace - formally typeset
Search or ask a question

Showing papers on "Magnetar published in 2015"


Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: The examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523 is reported, indicating magnetization in the vicinity of the source itself or within a host galaxy.
Abstract: Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

419 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of magnetar research, in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications address the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.
Abstract: Magnetars are the strongest magnets in the present universe and the combination of extreme magnetic field, gravity and density makes them unique laboratories to probe current physical theories (from quantum electrodynamics to general relativity) in the strong field limit. Magnetars are observed as peculiar, burst-active x-ray pulsars, the anomalous x-ray pulsars (AXPs) and the soft gamma repeaters (SGRs); the latter emitted also three 'giant flares', extremely powerful events during which luminosities can reach up to 10(47) erg s(-1) for about one second. The last five years have witnessed an explosion in magnetar research which has led, among other things, to the discovery of transient, or 'outbursting', and 'low-field' magnetars. Substantial progress has been made also on the theoretical side. Quite detailed models for explaining the magnetars' persistent x-ray emission, the properties of the bursts, the flux evolution in transient sources have been developed and confronted with observations. New insight on neutron star asteroseismology has been gained through improved models of magnetar oscillations. The long-debated issue of magnetic field decay in neutron stars has been addressed, and its importance recognized in relation to the evolution of magnetars and to the links among magnetars and other families of isolated neutron stars. The aim of this paper is to present a comprehensive overview in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications. This addresses not only the particular case of magnetar sources, but the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.

390 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of magnetar observations can be found in this article, where the most up-to-date theoretical models and their implications are discussed in the light of the observations.
Abstract: Magnetars are the strongest magnets in the present universe and the combination of extreme magnetic field, gravity and density makes them unique laboratories to probe current physical theories (from quantum electrodynamics to general relativity) in the strong field limit. Magnetars are observed as peculiar, burst--active X-ray pulsars, the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma Repeaters (SGRs); the latter emitted also three "giant flares," extremely powerful events during which luminosities can reach up to 10^47 erg/s for about one second. The last five years have witnessed an explosion in magnetar research which has led, among other things, to the discovery of transient, or "outbursting," and "low-field" magnetars. Substantial progress has been made also on the theoretical side. Quite detailed models for explaining the magnetars' persistent X-ray emission, the properties of the bursts, the flux evolution in transient sources have been developed and confronted with observations. New insight on neutron star asteroseismology has been gained through improved models of magnetar oscillations. The long-debated issue of magnetic field decay in neutron stars has been addressed, and its importance recognized in relation to the evolution of magnetars and to the links among magnetars and other families of isolated neutron stars. The aim of this paper is to present a comprehensive overview in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications. This addresses not only the particular case of magnetar sources, but the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.

371 citations


Journal ArticleDOI
09 Jul 2015-Nature
TL;DR: It is reported that a supernova was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677, and this supernova is more than three times more luminous than type Ic supernovae associated with long-duration μ-ray bursts, and its spectrum is distinctly different.
Abstract: A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.

309 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify a transition region in the space of Bd and birth period for which a magnetar can power both a long-duration gamma-ray burst (LGRB) and a luminous SN.
Abstract: Strongly-magnetized, rapidly-rotating neutron stars are contenders for the central engines of both long-duration gamma-ray bursts (LGRBs) and hydrogen-poor super-luminous supernovae (SLSNe-I). Models for typical (~minute long) LGRBs invoke magnetars with high dipole magnetic fields (Bd > 1e15 G) and short spin-down times, while models for SLSNe-I invoke neutron stars with weaker fields and longer spin-down times of weeks. Here we identify a transition region in the space of Bd and birth period for which a magnetar can power both a long GRB and a luminous SN. In particular, we show that a 2 ms period magnetar with a spin-down time of ~1e4 s can explain the observations of both the ultra-long GRB 111209 and its associated luminous SN2011kl. For magnetars with longer spin down times, we predict even longer duration (~1e6 s) GRBs and brighter supernovae, a correlation that extends to Swift J2058+05 (commonly interpreted as a tidal disruption event). We further show that previous estimates of the maximum rotational energy of a proto-magnetar were too conservative and energies up to Emax ~1-2e53 erg are possible. The magnetar model can therefore comfortably accommodate the extreme energy requirements recently posed by the most luminous supernova ASASSN-15lh. The high ionization flux from a pulsar wind nebula powering ASASSN-15lh may lead to an "ionization break-out" X-ray burst over the coming months, which would be accompanied by an abrupt change in the optical spectrum. We conclude by briefly contrasting millisecond magnetar and black hole models for SLSNe and ultra-long GRBs.

295 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed the Burst Alert Telescope (BAT)-XRT light curves of all short gamma-ray bursts detected by Swift and found that the so-called "extended emission" feature observed with BAT in some short GRBs is fundamentally the same component as the ''internal X-ray plateau'' observed in many short GRB, which is defined as a plateau in the light curve followed by a very rapid decay.
Abstract: One favored progenitor model for short duration gamma-ray bursts (GRBs) is the coalescence of two neutron stars (NS?NS). One possible outcome of such a merger would be a rapidly spinning, strongly magnetized neutron star (known as a millisecond magnetar). These magnetars may be ?supra-massive,? implying that they would collapse to black holes after losing centrifugal support due to magnetic dipole spin down. By systematically analyzing the Burst Alert Telescope (BAT)-XRT light curves of all short GRBs detected by Swift, we test how consistent the data are with this central engine model of short GRBs. We find that the so-called ?extended emission? feature observed with BAT in some short GRBs is fundamentally the same component as the ?internal X-ray plateau? observed in many short GRBs, which is defined as a plateau in the light curve followed by a very rapid decay. Based on how likely a short GRB is to host a magnetar, we characterize the entire Swift short GRB sample into three categories: the ?internal plateau? sample, the ?external plateau? sample, and the ?no plateau? sample. Based on the dipole spin-down model, we derive the physical parameters of the putative magnetars and check whether these parameters are consistent with expectations from the magnetar central engine model. The derived magnetar surface magnetic field and the initial spin period P0 fall into a reasonable range. No GRBs in the internal plateau sample have a total energy exceeding the maximum energy budget of a millisecond magnetar. Assuming that the beginning of the rapid fall phase at the end of the internal plateau is the collapse time of a supra-massive magnetar to a black hole, and applying the measured mass distribution of NS?NS systems in our Galaxy, we constrain the neutron star equation of state (EOS). The data suggest that the NS EOS is close to the GM1 model, which has a maximum non-rotating NS mass of .

225 citations


Journal ArticleDOI
TL;DR: In this paper, the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.
Abstract: Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2–12 s) and spin-down rates (∼10−13–10−10 s s−1) indicate external dipole fields of ∼1013−15 G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.

194 citations


Journal ArticleDOI
TL;DR: There are several phenomenological similarities between Soft Gamma Repeaters and Fast Radio Bursts, including duty factors, time scales and probable repetition as discussed by the authors, and failure of some alternative FRB models and non-detection of SGR~1806-20 at radio frequencies.
Abstract: There are several phenomenological similarities between Soft Gamma Repeaters and Fast Radio Bursts, including duty factors, time scales and probable repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGR, can meet the energy requirements of FRB but requires both the presence of magnetospheric plasma in order that dissipation occur in a transparent region and a mechanism for releasing much of that energy quickly. FRB sources and SGR are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from formation of the young neutron star and their decay ends the phase of SGR/AXP/FRB activity even though "magnetar" fields may persist. Runaway increase in resistance when the current density exceeds a threshold releases magnetostatic energy in a sudden burst and produces high brightness GHz emission of FRB by a coherent process; SGR are produced when released energy thermalizes as an equilibrium pair plasma. Failures of some alternative FRB models and the non-detection of SGR~1806-20 at radio frequencies are discussed in appendices.

194 citations


Journal ArticleDOI
TL;DR: ASASSN-15lh (SN 2015L) as discussed by the authors is the most luminous supernova yet found, reaching an absolute magnitude of M = 0.2326 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1.
Abstract: We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (M_K ~ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1+/- 0.2)x10^52 ergs, challenging the magnetar model for its engine.

177 citations


Journal ArticleDOI
TL;DR: In this paper, the authors synthesize the known information about fast radio bursts (FRBs) and radio magnetars, and describe an allowed origin near nuclei of external, but non-cosmological, galaxies.
Abstract: We synthesize the known information about fast radio bursts (FRBs) and radio magnetars, and describe an allowed origin near nuclei of external, but non-cosmological, galaxies. This places them at , within a few hundred megaparsecs. In this scenario, the high dispersion measure (DM) is dominated by the environment of the FRB, modeled on the known properties of the Milky Way center, whose innermost 100 pc provides 1000 pc cm?3. A radio loud magnetar is known to exist in our galactic center, within ?2 arcsec of Sgr A*. Based on the polarization, DM, and scattering properties of this known magnetar, we extrapolate its properties to those of Crab-like giant pulses and SGR flares and point out their consistency with observed FRBs. We conclude that galactic center magnetars could be the source of FRBs. This scenario is readily testable with very long baseline interferometry measurements as well as with flux count statistics from large surveys such as CHIME or UTMOST.

143 citations


Journal ArticleDOI
TL;DR: In this article, the authors present new photometry and spectroscopy for PTF12dam from 200-500 d (rest frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.09.
Abstract: Superluminous supernovae (SLSNe) of Type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best-studied superluminous explosions that has a broad and slowly fading light curve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200–500 d (rest frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the light curve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric light curve from −53 to +399 d (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense circumstellar material (CSM) produces a good fit to the data although this requires a very large mass (∼13 M⊙) of hydrogen-free CSM. The host galaxy is a compact dwarf (physical size ∼1.9 kpc) and with Mg = −19.33 ± 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low-mass system (2.8 × 108 M⊙) with a star formation rate (5.0 M⊙ yr−1), which implies a very high specific star formation rate (17.9 Gyr−1). The remarkably strong nebular emission provide detections of the [O iii] λ4363 and [O ii] λλ7320, 7330auroral lines and an accurate oxygen abundance of 12 + log (O/H) = 8.05 ± 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar SNe

Journal ArticleDOI
TL;DR: In this paper, a broad-band X-ray continuum map of the central 1.5 deg of the Galaxy is presented, including a total of about 1 5Ms of EPIC-pn cleaned exposures in the central 15" and about 200 ks outside.
Abstract: The deepest XMM-Newton mosaic map of the central 1.5 deg of the Galaxy is presented, including a total of about 1.5 Ms of EPIC-pn cleaned exposures in the central 15" and about 200 ks outside. This compendium presents broad-band X-ray continuum maps, soft X-ray intensity maps, a decomposition into spectral components and a comparison of the X-ray maps with emission at other wavelengths. Newly-discovered extended features, such as supernova remnants (SNRs), superbubbles and X-ray filaments are reported. We provide an atlas of extended features within +-1 degree of Sgr A*. We discover the presence of a coherent X-ray emitting region peaking around G0.1-0.1 and surrounded by the ring of cold, mid-IR-emitting material known from previous work as the "Radio Arc Bubble" and with the addition of the X-ray data now appears to be a candidate superbubble. Sgr A's bipolar lobes show sharp edges, suggesting that they could be the remnant, collimated by the circumnuclear disc, of a SN explosion that created the recently discovered magnetar, SGR J1745-2900. Soft X-ray features, most probably from SNRs, are observed to fill holes in the dust distribution, and to indicate a direct interaction between SN explosions and Galactic center (GC) molecular clouds. We also discover warm plasma at high Galactic latitude, showing a sharp edge to its distribution that correlates with the location of known radio/mid-IR features such as the "GC Lobe". These features might be associated with an inhomogeneous hot "atmosphere" over the GC, perhaps fed by continuous or episodic outflows of mass and energy from the GC region.

Journal ArticleDOI
TL;DR: In this article, a hydrogen-poor super-luminous supernova (SLSN) was discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects.
Abstract: We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ~1 day after explosion show a bright and relatively fast initial peak, lasting for ~15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal 56Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of $\sim 2\times {10}^{52}$ erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf–Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.

Journal ArticleDOI
TL;DR: In this article, the authors present a subgrid model that allows global simulations to take into account the small-scale amplification of the magnetic field which is caused by the development of turbulence during BNS mergers.
Abstract: The merger of binary neutron stars (BNSs) can lead to large amplifications of the magnetic field due to the development of turbulence and instabilities in the fluid, such as the Kelvin–Helmholtz shear instability, which drive small-scale dynamo activity. In order to properly resolve such instabilities and obtain the correct magnetic field amplification, one would need to employ resolutions that are currently unfeasible in global general relativistic magnetohydrodynamic simulations of BNS mergers. Here, we present a subgrid model that allows global simulations to take into account the small-scale amplification of the magnetic field which is caused by the development of turbulence during BNS mergers. Assuming dynamo saturation, we show that magnetar-level fields () can be easily reached, and should therefore be expected from the merger of magnetized BNSs. The total magnetic energy can reach values up to and the post-merger remnant can therefore emit strong electromagnetic signals and possibly produce short gamma-ray bursts.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the potential of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on-axis and off-axis gamma-ray bursts, supernovae, tidal disruption events, compact object mergers).
Abstract: The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on-axis and off-axis gamma-ray bursts (GRBs), supernovae, tidal disruption events, compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the minimum variability of the transients during the survey and an assessment of host galaxy contamination. We find that near-term GHz frequency surveys (ASKAP/VAST, Very Large Array Sky Survey) will detect few events: on- and off-axis long GRBs (LGRBs) and off-axis tidal disruption events, and neutron star binary mergers if of the mergers result in a stable millisecond magnetar. Low-frequency surveys (e.g., LOFAR) are unlikely to detect any transients, while a hypothetical large-scale mm survey may detect ?40 on-axis LGRBs. On the other hand, we find that SKA1 surveys at GHz have the potential to uncover thousands of transients, mainly on-axis and off-axis LGRBs, on-axis short GRBs, off-axis TDEs, and neutron star binary mergers with magnetar remnants.

Journal ArticleDOI
TL;DR: In this paper, the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.
Abstract: Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2-12 s) and spin-down rates (~10^{-13}-10^{-10} s/s) indicate external dipole fields of ~10^{13-15} G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the broadband data of short gamma-ray burst (GRB) detected by Swift can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field.
Abstract: GRB 080503 is a short gamma-ray burst (GRB) detected by Swift and has been classified as a GRB originating from a compact star merger. The soft extended emission and the simultaneous late re-brightening in both the X-ray and optical afterglow light curves raise interesting questions regarding its physical origin. We show that the broadband data of GRB 080503 can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field (i.e., a millisecond magnetar). We show that the late optical re-brightening is consistent with the emission from a magnetar-powered "merger-nova." This adds one more case to the growing sample of merger-novae associated with short GRBs. The soft extended emission and the late X-ray excess emission are well connected through a magnetar dipole spin-down luminosity evolution function, suggesting that direct magnetic dissipation is the mechanism to produce these X-rays. The X-ray emission initially leaks from a hole in the merger ejecta pierced by the short GRB jet. The hole subsequently closes after the magnetar spins down and the magnetic pressure drops below ram pressure. The X-ray photons are then trapped behind the merger-nova ejecta until the ejecta becomes optically thin at a later time. This explains the essentially simultaneous re-brightening in both the optical and X-ray light curves. Within this model, future gravitational-wave sources could be associated with a bright X-ray counterpart along with the merger-nova, even if the short GRB jet beams away from Earth.

Journal ArticleDOI
TL;DR: In this paper, the torque equilibrium condition for the pulsar indicates the dipole magnetic field of the neutron star is $6.7 \times 10−13$ G, two orders of magnitude higher than that estimated by Bachetti et al., and further point to the possibility that even stronger magnetic fields could well be in the higher multipoles.
Abstract: The recent detection of pulsations from the ultra luminous X-ray source (ULX) NuSTAR J095551+6940.8 in M82 by Bachetti et al. indicates that the object is an accreting neutron star in a high mass X-ray binary (HMXB) system. The super-Eddington luminosity of the object implies that the magnetic field is sufficiently strong to suppress the scattering cross-section unless its beam is viewed at a favourable angle. We show that the torque equilibrium condition for the pulsar indicates the dipole magnetic field of the neutron star is $6.7 \times 10^{13}$ G, two orders of magnitude higher than that estimated by Bachetti et al., and further point to the possibility that even stronger magnetic fields could well be in the higher multipoles. This supports the recent view that magnetars descent from HMXBs if the magnetic field decays an order of magnitude during the process of transition.

Journal ArticleDOI
TL;DR: In this article, it has been shown that, if embryonic pulsar wind nebulae satisfy similar conditions at early stages of supernova explosion, external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission.
Abstract: It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

Journal ArticleDOI
TL;DR: In this article, ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature.
Abstract: We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v 20,000 km s–1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v 27,000 km s–1). We use these observations to estimate explosion properties and derive a total ejecta mass of ~2.7 M ☉, a kinetic energy of ~1.0 × 1052 erg, and a 56Ni mass of 0.1-0.2 M ☉. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z Z ☉, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

Journal ArticleDOI
Paul D. Lasky1
TL;DR: In this paper, the authors review mechanisms for generating gravitational waves with neutron stars, including magnetic and thermo-elastic deformations, various stellar oscillation modes, and core superfluid turbulence.
Abstract: Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

Journal ArticleDOI
TL;DR: The first spectroscopically confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES) is DES13S2cmm as mentioned in this paper, which is located in a low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3).
Abstract: We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 +/- 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find M_U_peak = -21.05 +0.10 -0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-mass host galaxy (log(M/M_sun) = 9.3 +/- 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for 'standardising' such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I - the radioactive decay of 56Ni, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.

Journal ArticleDOI
TL;DR: In this article, the authors derive a criterion for crust-breaking induced by a changing magnetic field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models.
Abstract: Crustquake events may be connected with both rapid spin-up ‘glitches’ within the regular slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field decay builds up stresses in a neutron star's crust, as the elastic shear force resists the Lorentz force's desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-breaking induced by a changing magnetic-field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models. Universally, we find that the crust is most liable to break if the magnetic field has a strong toroidal component, in which case the epicentre of the crustquake is around the equator. We calculate the energy released in a crustquake as a function of the fracture depth, finding that it is independent of field strength. Crust-breaking is, however, associated with a characteristic local field strength of 2.4 × 1014 G for a breaking strain of 0.001, or 2.4 × 1015 G at a breaking strain of 0.1. We find that even the most luminous magnetar giant flare could have been powered by crustal energy release alone.

Journal ArticleDOI
TL;DR: In this paper, the effect of strong magnetic fields in models involving quadratic and cubic corrections in the Ricci scalar R to the Hilbert-Einstein action is investigated.
Abstract: Neutron stars with strong magnetic fields are considered in the framework of f(R) gravity. In order to describe dense matter in magnetic field, the model with baryon octet interacting through σρω-fields is used. The hyperonization process results in softening the equation of state (EoS) and in decreasing the maximal mass. We investigate the effect of strong magnetic field in models involving quadratic and cubic corrections in the Ricci scalar R to the Hilbert–Einstein action. For large fields, the Mass–Radius relation differs considerably from that of General Relativity only for stars with masses close to the maximal one. Another interesting feature is the possible existence of more compact stable stars with extremely large magnetic fields (∼6×1018 G instead of ∼4×1018 G as in GR) in the central regions of the stars. Due to cubic terms, a significant increasing of the maximal mass is possible.

Journal ArticleDOI
TL;DR: In this article, a hydrogen-poor super-luminous supernova (SLSN) was discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects.
Abstract: We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ~1 day after explosion show a bright and relatively fast initial peak, lasting for ~15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal 56Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ~2x10^{52} erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fall-back accretion onto a central black hole. The prompt energy required may favour the black hole scenario. The bright initial peak effectively rules out a compact Wolf-Rayet star as a progenitor, since the inferred energies and ejected masses become unphysical.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated magnetic field evolution in the neutron star crust due to Hall drift as an explanation for observed braking indices and showed that a 10 14 G quadrupolar toroidal field in the crust at birth leads to growth of the dipole moment at a rate large enough to agree with measured braking indices.
Abstract: Braking index measurements of young radio pulsars are all smaller than the value expected for spin down by magnetic dipole braking. We investigate magnetic field evolution in the neutron star crust due to Hall drift as an explanation for observed braking indices. Using numerical simulations and a semi-analytic model, we show that a 10 14 G quadrupolar toroidal field in the neutron star crust at birth leads to growth of the dipole moment at a rate large enough to agree with measured braking indices. A key factor is the density at which the crust yields to magnetic stresses that build up during the evolution, which sets a characteristic minimum Hall timescale. The observed braking indices of pulsars with inferred dipole fields of . 10 13 G can be explained in this picture, although with a significant octupole component needed in some cases. For the stronger field pulsars, those with Bd & 10 13 G, we find that the magnetic stresses in the crust exceed the maximum shear stress before the pulsar reaches its current age, likely quenching the Hall e ect. This may have implications for the magnetar activity seen in the high magnetic field radio pulsar PSR J1846-0258. Observations of braking indices may therefore be a new piece of evidence that neutron stars contain subsurface toroidal fields that are significantly stronger than the dipole field, and may indicate that the Hall e ect is important in a wider range of neutron stars than previously thought.

Journal ArticleDOI
TL;DR: The Fermi/GBM magnetar catalog as discussed by the authors provides the results of the temporal and spectral analyses of 440 magnetar bursts with high-temporal and spectral resolution, covering the first five years of GBM magnetar observations, from 2008 July to 2013 June.
Abstract: Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

Journal ArticleDOI
TL;DR: In this paper, the authors describe a possible signature of the central engine of a supernova explosion, a burst of shock breakout emission occurring several days after the supernova's explosion.
Abstract: The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (~10^{14} cm) so that the radiation released is at optical/ultraviolet wavelengths (T ~ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SNLSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magnetar heating. A distinct double peaked light curve may therefore only be conspicuous if thermal heating from the magnetar is suppressed at early times. We describe how such a delay in heating may naturally result from inefficient dissipation and thermalization of the pulsar wind magnetic energy. Without such suppression, the breakout may only be noticeable as a small bump or kink in the early luminosity or color evolution, or as a small but abrupt rise in the photospheric velocity. A similar breakout signature may accompany other central engines in supernovae, such as a black hole accreting fallback material.

Journal ArticleDOI
TL;DR: In this paper, the authors report on the long-term Chandra (25 observations) and XMM-Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September.
Abstract: In 2013 April a new magnetar, SGR 1745−2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745−2900 has a surface dipolar magnetic field of ∼2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ∼ 5 × 1035 erg s−1. Here we report on the long-term Chandra (25 observations) and XMM-Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ∼2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10−12 to 3.3 × 10−11 s s−1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ∼200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.

Journal ArticleDOI
TL;DR: In this paper, the authors present NuSTAR spectral and timing studies of the Supergiant Fast X-ray Transient (SFXT) IGR J17544-2619.
Abstract: We present NuSTAR spectral and timing studies of the Supergiant Fast X-ray Transient (SFXT) IGR J17544-2619. The spectrum is well-described by a ~ 1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming that the compact object in IGR J17544-2619 is indeed a neutron star. This is the first measurement of the magnetic field in a SFXT. The inferred magnetic field strength, B = (1.45 ± 0.03) x 10^(12)G • (1 + z) is typical of neutron stars in X-ray binaries, and rules out a magnetar nature for the compact object. We do not find any significant pulsations in the source on time scales of 1–2000 s.