scispace - formally typeset
Search or ask a question

Showing papers on "Magnetar published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008.
Abstract: We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity.

429 citations


Journal ArticleDOI
TL;DR: In this article, the authors consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances: What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate 10 3 -10 4 sky 1 day 1?
Abstract: We consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances. What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate 10 3 -10 4 sky 1 day 1 ? The burst rate is comparable to the NS formation rate in a Hubble volume, requiring only one per NS if they are bright enough. However, radiation physics causes us to favor a closer population. More bursts per NS are then required but repeats in 10 to 100 yr could still be negligible. Bursts are modeled as sub-ns, coherent shot pulses superposed incoherently to produce msduration 1 Jy amplitudes; each shot-pulse can be much weaker than the burst amplitude, placing less restrictive requirements on the emission process. Nonetheless, single shot pulses are similar to the extreme, unresolved (< 0:4 ns) MJy shot pulse seen from the Crab pulsar, which is consistent with coherent curvature radiation emitted near the light cylinder by an almost neutral clump with net charge 10 21 e and total energy & 10 23 ergs. Bursts from Gpc distances require incoherent superposition of 10 12 d 2 shot pulses or a total energy & 10 35 d 2 erg. The energy reservoir near the light cylinder limits the detection distance to . few 100 Mpc for a fluence 1 Jy ms unless conditions are more extreme than for the Crab pulsar. Similarly, extreme single pulses from ordinary pulsars and magnetars could be detectable from throughout the Local Group and perhaps farther. Contributions to dispersion measures from galaxy clusters will be significant for some of the bursts. We discuss tests for the signatures of bursts associated with extragalactic NSs.

359 citations


Journal ArticleDOI
TL;DR: In this article, the role of pair-enriched bubbles produced by young magnetars, rapidly-rotating neutron stars, and magnetized white dwarfs in the escape of high-energy gamma-rays and radio waves was studied.
Abstract: Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and super-luminous supernovae. We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly-rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of >10-100 yr. In the rapidly-rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Second, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (<10-100 Mpc) high-energy gamma-ray flashes may be detected by HAWC and CTA, and the subsequent afterglow emission may be seen by radio telescopes such as VLA. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

279 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used waveform modeling to determine the equation of state at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent.
Abstract: One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star’s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. An illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.

255 citations


Journal ArticleDOI
15 Jan 2016-Science
TL;DR: ASASSN-15lh (SN 2015L) as mentioned in this paper is the most luminous supernova yet found, reaching an absolute magnitude of Mu, AB = −23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s−1.
Abstract: We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu,AB = –23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s–1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ –25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 1052 ergs, challenging the magnetar model for its engine.

202 citations


Journal ArticleDOI
TL;DR: There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition as discussed by the authors.
Abstract: There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGRs, can meet the energy requirements of FRBs, but requires both the presence of magnetospheric plasma, in order for dissipation to occur in a transparent region, and a mechanism for releasing much of that energy quickly. FRB sources and SGRs are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from the formation of the young neutron star, and their decay ends the phase of SGR/AXP/FRB activity even though "magnetar" fields may persist. Runaway increases in resistance when the current density exceeds a threshold, releases magnetostatic energy in a sudden burst, and produces high brightness GHz emission of FRB by a coherent process. SGRs are produced when released energy thermalizes as an equlibrium pair plasma. The failures of some alternative FRB models and the non-detection of SGR 1806-20 at radio frequencies are discussed in the appendices.

191 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present observations of SN 2015bn, a Type I superluminous supernova (SLSN) at redshift z = 0.1136, and derive physical properties including the bolometric luminosity and non-monotonic temperature and radial evolution.
Abstract: We present observations of SN 2015bn (=PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter (M_U ≈ -23.1) and in a fainter galaxy (M_B ≈ -16.0) than other SLSNe at z ~ 0.1. We used this opportunity to collect the most extensive data set for any SLSN I to date, including densely sampled spectroscopy and photometry, from the UV to the NIR, spanning −50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30–50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20–30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a ≳ 10 M_☉ stripped progenitor exploding with ~ 10^(51) erg kinetic energy, forming a magnetar with a spin-down timescale of ~20 days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario—interaction with ~20 M_☉ of dense, inhomogeneous circumstellar material—can be tested with continuing radio follow-up.

177 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented the first convincing observational manifestation of a magnetar-like magnetic field in an accreting neutron star in binary system, which can be interpreted as the action of the "propeller regime" of accretion.
Abstract: We present here the first convincing observational manifestation of a magnetar-like magnetic field in an accreting neutron star in binary system - the first pulsating ultra-luminous X-ray source X-2 in the galaxy M82. Using the Chandra X-ray observatory data we show that the source exhibit the bimodal distribution of the luminosity with two well-defined peaks separated by a factor of 40. This behaviour can be interpreted as the action of the "propeller regime" of accretion. The onset of the propeller in a 1.37 s pulsar at luminosity of ~$10^{40}$ erg/s implies the dipole component of the neutron star magnetic field of ~$10^{14}$ G.

157 citations


Journal ArticleDOI
TL;DR: In this paper, the near-maximum spectra of most superluminous supernovae (SLSNe) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II.
Abstract: The near-maximum spectra of most superluminous supernovae (SLSNe) that are not dominated by interaction with a H-rich circum-stellar medium (SLSN-I) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II. SN 2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/ultraviolet (UV) spectrum. Radiation transport methods are used to show that the spectra (not including SN 2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon–oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ∼10 000–15 000 km s−1, several lines form in the UV. O II lines, however, arise from very highly excited lower levels, which require significant departures from local thermodynamic equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energized by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterizes SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN 2011kl requires higher ejecta velocities (∼20 000 km s−1): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high-ionization near-maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification.

144 citations


Journal ArticleDOI
TL;DR: Fast radio bursts (FRBs) are millisecond bursts of radio radiation at frequencies of about 1 GHz, recently discovered in pulsar surveys as mentioned in this paper, indicating passage through a high column density of low density plasma.
Abstract: Fast radio bursts (FRBs) are millisecond bursts of radio radiation at frequencies of about 1 GHz, recently discovered in pulsar surveys. They have not yet been definitively identified with any other astronomical object or phenomenon. The bursts are strongly dispersed, indicating passage through a high column density of low density plasma. The most economical interpretation is that this is the intergalactic medium, indicating that FRB are at “cosmological” distances with redshifts in the range 0.3–1.3. Their inferred brightness temperatures are as high as 1037 K, implying coherent emission by “bunched” charges, as in radio pulsars. I review the astronomical sites, objects and emission processes that have been proposed as the origin of FRB, with particular attention to soft gamma repeaters (SGRs) and giant pulsar pulses.

143 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined four candidate mechanisms that could explain the high surface temperatures of magnetars, including heat flux from the liquid core heated by ambipolar diffusion and mechanical dissipation in the solid crust.
Abstract: We examine four candidate mechanisms that could explain the high surface temperatures of magnetars (1) Heat flux from the liquid core heated by ambipolar diffusion It could sustain the observed surface luminosity $L_s\approx 10^{35}$ erg/s if core heating offsets neutrino cooling at a temperature $T_{core}>6\times 10^8$ K This scenario is viable if the core magnetic field exceeds $10^{16}$ G and the heat-blanketing envelope of the magnetar has a light element composition We find however that the lifetime of such a hot core should be shorter than the typical observed lifetime of magnetars (2) Mechanical dissipation in the solid crust This heating can be quasi-steady, powered by gradual (or frequent) crustal yielding to magnetic stresses We show that it obeys a strong upper limit As long as the crustal stresses are fostered by the field evolution in the core or Hall drift in the crust, mechanical heating is insufficient to sustain persistent $L_s\approx 10^{35}$ erg/s The surface luminosity is increased in an alternative scenario of mechanical deformations triggered by external magnetospheric flares (3) Ohmic dissipation in the crust, in volume or current sheets This mechanism is inefficient because of the high conductivity of the crust Only extreme magnetic configurations with crustal fields $B>10^{16}$ G varying on a 100 meter scale could provide $L_s\approx 10^{35}$ erg/s (4) Bombardment of the stellar surface by particles accelerated in the magnetosphere This mechanism produces hot spots on magnetars Observations of transient magnetars show evidence for external heating

Journal ArticleDOI
TL;DR: In this article, the authors present observations of four rapidly rising (trise ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (Mpeak ap; -20) -one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey.
Abstract: The American Astronomical Society. All rights reserved..We present observations of four rapidly rising (trise ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (Mpeak ap; -20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a "Type 1.5 SN" scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature. © 2016.

Journal ArticleDOI
TL;DR: In this article, the authors describe a possible signature of the central engine of a supernova explosion, a burst of shock breakout emission occurring several days after the supernova's explosion.
Abstract: The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (~10^{14} cm) so that the radiation released is at optical/ultraviolet wavelengths (T ~ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SNLSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magnetar heating. A distinct double peaked light curve may therefore only be conspicuous if thermal heating from the magnetar is suppressed at early times. We describe how such a delay in heating may naturally result from inefficient dissipation and thermalization of the pulsar wind magnetic energy. Without such suppression, the breakout may only be noticeable as a small bump or kink in the early luminosity or color evolution, or as a small but abrupt rise in the photospheric velocity. A similar breakout signature may accompany other central engines in supernovae, such as a black hole accreting fallback material.

Journal ArticleDOI
TL;DR: In this article, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam (DECam) for Super-Luminous Supernovae.
Abstract: We present DES14X3taz, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam for Superluminous Supernovae. Spectra obtained using Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy on the Gran Telescopio CANARIAS show DES14X3taz is an SLSN-I at z = 0.608. Multi-color photometry reveals a double-peaked light curve: a blue and relatively bright initial peak that fades rapidly prior to the slower rise of the main light curve. Our multi-color photometry allows us, for the first time, to show that the initial peak cools from 22,000 to 8000 K over 15 rest-frame days, and is faster and brighter than any published core-collapse supernova, reaching 30% of the bolometric luminosity of the main peak. No physical 56Ni-powered model can fit this initial peak. We show that a shock-cooling model followed by a magnetar driving the second phase of the light curve can adequately explain the entire light curve of DES14X3taz. Models involving the shock-cooling of extended circumstellar material at a distance of sime400 ${\text{}}{R}_{\odot }$ are preferred over the cooling of shock-heated surface layers of a stellar envelope. We compare DES14X3taz to the few double-peaked SLSN-I events in the literature. Although the rise times and characteristics of these initial peaks differ, there exists the tantalizing possibility that they can be explained by one physical interpretation.

Journal ArticleDOI
TL;DR: In this article, a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127 was reported, heralded by two short bright Xray bursts on 2016 July 27 and 28.
Abstract: Radio pulsars are believed to have their emission powered by the loss of rotational kinetic energy. By contrast, magnetars show intense X-ray and γ-ray radiation whose luminosity greatly exceeds that due to spin down and magnetar luminosity is believed to be powered by intense internal magnetic fields. A basic prediction of this picture is that radio pulsars of high magnetic field should show magnetar-like emission. Here we report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119–6127, heralded by two short bright X-ray bursts on 2016 July 27 and 28. Using target of opportunity data from the Swift X-ray Telescope and NuSTAR, we show that this pulsar's flux has brightened by a factor of >160 in the 0.5–10 keV band, and that its previously soft X-ray spectrum has undergone a strong hardening with strong pulsations appearing for the first time above 2.5 keV, with phase-averaged emission detectable up to 25 keV. By comparing Swift-XRT and NuSTAR timing data with a pre-outburst ephemeris derived from Fermi Large Area Telescope data, we find that the source has contemporaneously undergone a large spin-up glitch of amplitude Δν/ν = 5.74(8) x 10^(-6). The collection of phenomena observed thus far in this outburst strongly mirrors those in most magnetar outbursts and provides an unambiguous connection between the radio pulsar and magnetar populations.

Journal ArticleDOI
TL;DR: In this paper, photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey, was presented.
Abstract: We present photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova (SLSN) at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey. PS1-14bj stands out because of its extremely slow evolution, with an observed rise of ≳ 125 rest-frame days, and exponential decline out to ~250 days past peak at a measured rate of 0.01 mag day^(-1), consistent with fully trapped ^(56)Co decay. This is the longest rise time measured in an SLSN to date, and the first SLSN to show a rise time consistent with pair-instability supernova (PISN) models. Compared to other slowly evolving SLSNe, it is spectroscopically similar to the prototype SN 2007bi at maximum light, although lower in luminosity (L_(peak) ≃ 4.6 x 10^(43) erg s(-1)) and with a flatter peak than previous events. PS1-14bj shows a number of peculiar properties, including a near-constant color temperature for >200 days past peak, and strong emission lines from [O III] λ5007 and [O III] λ4363 with a velocity width of ~3400 km s^(−1) in its late-time spectra. These both suggest there is a sustained source of heating over very long timescales, and are incompatible with a simple ^(56)Ni-powered/PISN interpretation. A modified magnetar model including emission leakage at late times can reproduce the light curve, in which case the blue continuum and [O III] features are interpreted as material heated and ionized by the inner pulsar wind nebula becoming visible at late times. Alternatively, the late-time heating could be due to interaction with a shell of H-poor circumstellar material.

Journal ArticleDOI
TL;DR: Detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations finds that magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field.
Abstract: Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star's persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal-toroidal fields of comparable energies.

Journal ArticleDOI
TL;DR: In this article, Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of RCW 103 during its 2016 outburst peak were used to study the properties of this magnetar-like burst.
Abstract: The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the "anti-magnetar" scenario for other CCOs.

Journal ArticleDOI
TL;DR: In this paper, Chandra, NuSTAR, and Swift (BAT and XRT) observations of 1E 161348-5055 were used to detect a magnetar-like short X-ray burst from the direction of the SNR RCW 103.
Abstract: The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the SNR RCW 103, named 1E 161348-5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) onboard Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348-5055, also coincident with a large long-term X-ray outburst. Here we report on Chandra, NuSTAR, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to July 2016). We find the emission properties of 1E 161348-5055 consistent with it being a magnetar. However in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized neutron star, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the "anti-magnetar" scenario for other CCOs.

Journal ArticleDOI
TL;DR: In this paper, an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to+50 d.
Abstract: We present and analyse an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor SLSN. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially resolved bright regions, and we used the VLT and FORS2 to obtain a deep (five-hour exposure) spectra of the SN position and the three star-forming regions, which are at a similar redshift. The FORS spectrum at +300 days shows no trace of SN emission lines and we place limits on the strength of [O I] from comparisons with other Ic SNe. The deep spectra provides a unique chance to investigate spatial variations in the host star-formation activity and metallicity. The specific star-formation rate is similar in all three components, as is the presence of a young stellar population. However, the position of LSQ14mo exhibits a lower metallicity, with 12 + log(O/H) = 8.2 in both the R23 and N2 scales (corresponding to ~ 0.3 Z_sol). We propose that the three bright regions in the host system are interacting, which thus triggers star-formation and forms young stellar populations.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the problem in two dimensions and found that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists.
Abstract: Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery in Swift satellite data of a transient gamma-ray counterpart to the fast radio burst FRB131104, the first such counterpart to any FRB.
Abstract: We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2$\sigma$ confidence) to the fast radio burst FRB131104, the first such counterpart to any FRB. The transient has duration $T_{90} \gtrsim 100$s and fluence $S_\gamma\approx 4\times 10^{-6}$ erg cm$^{-2}$, increasing the energy budget for this event by more than a billion times; at the nominal $z\approx 0.55$ redshift implied by its dispersion measure, the burst's gamma-ray energy output is $E_\gamma \approx 5\times 10^{51}$ erg. The observed radio to gamma-ray fluence ratio for FRB131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806-20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB's nominal distance, $D\gtrsim 320$ Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, as for example from magnetar flares, gamma-ray bursts, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.

Journal ArticleDOI
TL;DR: In this article, the authors performed spectral and temporal analyses of two hard X-ray bursts from the rotation-powered pulsar PSR J1119−6127, which triggered the Fermi and Swift space observatories.
Abstract: Two energetic hard X-ray bursts from the rotation-powered pulsar PSR J1119−6127 recently triggered the Fermi and Swift space observatories. We have performed in-depth spectral and temporal analyses of these two events. Our extensive searches in both observatories' data for lower luminosity bursts uncovered 10 additional events from the source. We report here on the timing and energetics of the 12 bursts from PSR J1119−6127 during its burst active phase on 2016 July 26 and 28. We also found a spectral softer X-ray flux enhancement in a post-burst episode, which shows evidence of cooling. Here we discuss the implications of these results on the nature of this unusual high-field radio pulsar, which firmly place it within the typical magnetar population.

Journal ArticleDOI
TL;DR: In this paper, the authors used the radiation hydrodynamics code to simulate magnetar-powered very luminous supernovae (SNe) and found that the light curve (LC) of SN 2011kl is consistent with a magnetar power source, but some amount of 56Ni is necessary to explain the low contrast between the LC peak and tail.
Abstract: Two recently discovered very luminous supernovae (SNe) present stimulating cases to explore the extents of the available theoretical models. SN 2011kl represents the first detection of a supernova explosion associated with an ultra-long duration gamma-ray burst. ASASSN-15lh was even claimed as the most luminous SN ever discovered, challenging the scenarios so far proposed for stellar explosions. Here we use our radiation hydrodynamics code in order to simulate magnetar-powered SNe. To avoid explicitly assuming neutron star properties, we adopt the magnetar luminosity and spin-down timescale as free parameters of the model. We find that the light curve (LC) of SN 2011kl is consistent with a magnetar power source, as previously proposed, but we note that some amount of 56Ni () is necessary to explain the low contrast between the LC peak and tail. For the case of ASASSN-15lh, we find physically plausible magnetar parameters that reproduce the overall shape of the LC provided the progenitor mass is relatively large (an ejecta mass of ). The ejecta hydrodynamics of this event is dominated by the magnetar input, while the effect is more moderate for SN 2011kl. We conclude that a magnetar model may be used for the interpretation of these events and that the hydrodynamical modeling is necessary to derive the properties of powerful magnetars and their progenitors.

Journal ArticleDOI
TL;DR: In this article, the authors describe the NASA Fermi-Fermi grant and the NASA ATP grant as the most significant NASA ADA grant to date, with a total amount of $1.5 million.
Abstract: NASA [PF4-150121]; NASA Fermi grant [NNX14AQ68G]; NSF [AST-1410950, AST-1411763]; NASA ATP grant [NNX16AB30G]; Alfred P. Sloan Foundation; NASA ADA grant [NNX15AE50G]

Journal ArticleDOI
TL;DR: In this article, the authors used the Jansky very large array (VLA) and the Australia Telescope Compact Array (ATCA) to search for macronova candidates for short gamma-ray bursts (sGRBs).
Abstract: Compact binary mergers may have already been observed as they are the leading model for short gamma-ray bursts (sGRBs). Radioactive decay within the ejecta from these mergers is expected to produce an infra-red flare, dubbed macronova (or kilonova), on a time scale of a week. Recently two such macronova candidates were identified in followup observations of sGRBs, strengthening the possibility that those indeed arise from mergers. The same ejecta will also produce a long term (months to years) radio emission due to its interaction with the surrounding ISM. In search for this emission, we observed the two macronova candidates, GRB 130603B and GRB 060614 with the Jansky very large array (VLA) and the Australia Telescope Compact Array (ATCA). Our observations resulted in null-detections, putting strong upper limits on the kinetic energy and mass of the ejecta. A possible outcome of a merger is a highly magnetized neutron star (a magnetar), which has been suggested as the central engine for GRBs. Such a magnetar will deposit a significant fraction of its energy into the ejecta leading to a brighter radio flare. Our results, therefore, rule out magnetars in these two events.

Journal ArticleDOI
TL;DR: In this article, the interaction between Hall waves and mechanical failures inside a magnetar crust was explored using detailed one-dimentional models that consider temperature-sensitive plastic flow, heat transport and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere.
Abstract: We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimentional models that consider temperature-sensitive plastic flow, heat transport and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

Journal ArticleDOI
TL;DR: In this paper, the authors report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127, heralded by two short bright Xray bursts on 2016 July 27 and 28.
Abstract: Radio pulsars are believed to have their emission powered by the loss of rotational kinetic energy. By contrast, magnetars show intense X-ray and gamma-ray radiation whose luminosity greatly exceeds that due to spin-down and is believed to be powered by intense internal magnetic fields. A basic prediction of this picture is that radio pulsars of high magnetic field should show magnetar-like emission. Here we report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127, heralded by two short bright X-ray bursts on 2016 July 27 and 28 (Kennea et al. 2016; Younes et al. 2016). Using Target-of-Opportunity data from the Swift X-ray Telescope and NuSTAR, we show that this pulsar's flux has brightened by a factor of > 160 in the 0.5-10 keV band, and its previously soft X-ray spectrum has undergone a strong hardening, with strong pulsations appearing for the first time above 2.5 keV, with phase-averaged emission detectable up to 25 keV. By comparing Swift-XRT and NuSTAR timing data with a pre-outburst ephemeris derived from Fermi Large Area Telescope data, we find that the source has contemporaneously undergone a large spin-up glitch of amplitude df/f = 5.74(8) E-6. The collection of phenomena observed thus far in this outburst strongly mirrors those in most magnetar outbursts and provides an unambiguous connection between the radio pulsar and magnetar populations.

Journal ArticleDOI
TL;DR: In this article, the authors consider the scenario that pulsar-driven newborn neutron stars (NSs) power various stripped-envelope (SNe), not only super-luminous SNe Ic but also broad-line (BL) SNe Ibc and possibly some ordinary supernovae Ibc.
Abstract: Fast-spinning strongly magnetized newborn neutron stars (NSs), including nascent magnetars, are popularly implemented as the engine of luminous stellar explosions. Here, we consider the scenario that they power various stripped-envelope (SE) supernovae (SNe), not only super-luminous SNe Ic but also broad-line (BL) SNe Ibc and possibly some ordinary supernovae Ibc. This scenario is also motivated by the hypothesis that Galactic magnetars largely originate from fast-spinning NSs as remnants of SE SNe. By consistently modeling the energy injection from magnetized wind and 56 Ni decay, we show that proto-NSs with & 10 ms rotation and poloidal magnetic field of Bdip & 5×10 14 G can be harbored in ordinary SNe Ibc. On the other hand, millisecond proto-NSs can solely power BL SNe Ibc if they are born with Bdip & 5×10 14 G, and superluminous SNe Ic with Bdip & 10 13 G. Then, we study how multi-messenger emission can be used to discriminate such pulsar-driven SN models from other competitive scenarios. First, high-energy X-ray and gamma-ray emission from embryonic pulsar wind nebulae can probe the underlying newborn pulsar. Follow-up observations of SE SNe using NuSTAR ∼ 50−100 days after the explosion is strongly encouraged for nearby objects. We also discuss possible effects of gravitational waves (GWs) on the spin-down of proto-NSs. If millisecond proto-NSs with Bdip < a few × 10 13 G emit GWs through, e.g., non-axisymmetric rotation deformed by the inner toroidal fields of Bt & 10 16 G, the GW signal can be detectable from ordinary SNe Ibc in the Virgo cluster by Advanced LIGO, Advanced Virgo, and KAGRA.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of a bright, short, structured X-ray burst coming from the supernova remnant RCW 103 on 2016 June 22 caught by the Swift/Burst Alert Telescope (BAT) monitor, and on the follow-up campaign made with Swift/X-ray Telescope, Swift/UV/Optical Telescope, and the optical/nearinfrared (NIR) Gamma-Ray burst Optical and Near-infrared Detector.
Abstract: We report on the detection of a bright, short, structured X-ray burst coming from the supernova remnant RCW 103 on 2016 June 22 caught by the Swift/Burst Alert Telescope (BAT) monitor, and on the follow-up campaign made with Swift/X-ray Telescope, Swift/UV/Optical Telescope, and the optical/near-infrared (NIR) Gamma-Ray burst Optical and Near-infrared Detector. The characteristics of this flash, such as duration and spectral shape, are consistent with typical short bursts observed from soft gamma repeaters. The BAT error circle at 68 per cent confidence range encloses the point-like X-ray source at the centre of the nebula, 1E 161348−5055. Its nature has been long debated due to a periodicity of 6.67 h in X-rays, which could indicate either an extremely slow pulsating neutron star, or the orbital period of a very compact X-ray binary system. We found that 20 min before the BAT trigger, the soft X-ray emission of 1E 161348−5055 was a factor of ∼100 higher than measured 2 yr earlier, indicating that an outburst had already started. By comparing the spectral and timing characteristics of the source in the 2 yr before the outburst and after the BAT event, we find that, besides a change in luminosity and spectral shape, also the 6.67 h pulsed profile has significantly changed with a clear phase shift with respect to its low-flux profile. The UV/optical/NIR observations did not reveal any counterpart at the position of 1E 161348−5055. Based on these findings, we associate the BAT burst with 1E 161348−5055, we classify it as a magnetar, and pinpoint the 6.67 h periodicity as the magnetar spin period.