scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Swift/Burst Alert Telescope triggered on a short burst with temporal and spectral characteristics similar to those of soft gamma repeater (SGR) bursts was used to confirm SGR J1833-0832 as a magnetar.
Abstract: On 2010 March 19, the Swift/Burst Alert Telescope triggered on a short burst with temporal and spectral characteristics similar to those of soft gamma repeater (SGR) bursts. The source location, however, did not coincide with any known SGR. Subsequent observations of the source error box with the Swift/X-Ray Telescope and the Rossi X-ray Timing Explorer led to the discovery of a new X-ray source with a spin period of 7.56 s, confirming SGR J1833-0832 as a new magnetar. Based on our detailed temporal and spectral analyses, we show that the new SGR is rapidly spinning down (4 x 10(-12) s s(-1)) and find an inferred dipole magnetic field of 1.8 x 10(14) G. We also show that the X-ray flux of SGR J1833-0832 remained constant for approximately 20 days following the burst and then started to decline. We derived an accurate location of the source with the Chandra X-ray Observatory and we searched for a counterpart in deep optical and infrared observations of SGR J1833-0832, and for radio pulsed emission with the Westerbork Radio Synthesis Telescope. Finally, we compare the spectral and temporal properties of the source to other magnetar candidates.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on two years of flux and spin evolution monitoring of 1E 1048.1-5937, a 6.5 s X-ray pulsar identified as a magnetar.
Abstract: We report on two years of flux and spin evolution monitoring of 1E 1048.1–5937, a 6.5 s X-ray pulsar identified as a magnetar. Using Swift X-Ray Telescope data, we observed an X-ray outburst consisting of an increase in the persistent 1-10 keV flux by a factor of 6.3 ± 0.2, beginning on 2011 December 31 (MJD 55926). Following a delay of ∼100 days, the magnetar entered a period of large torque variability, with ν-dot reaching a factor of 4.55 ± 0.05 times the nominal value, before decaying in an oscillatory manner over a timescale of months. We show by comparing to previous outbursts from the source that this pattern of behavior may repeat itself with a quasi-period of ∼1800 days. We compare this phenomenology to periodic torque variations in radio pulsars, finding some similarities that suggest a magnetospheric origin for the behavior of 1E 1048.1–5937.

54 citations

Journal ArticleDOI
TL;DR: In this article, the temporal and spectral properties of the magnetar 1E 1547.0-5408 have been analyzed with the Rossi X-ray Timing Explorer (RXTE) the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Swift satellite.
Abstract: The magnetar 1E 1547.0-5408 exhibited outbursts in 2008 October and 2009 January. In this paper, we present in great detail the evolution of the temporal and spectral characteristics of the persistent total and pulsed emission of 1E 1547.0-5408 between ~1 and 300 keV starting on 2008 October 3 and ending in 2011 January. We analyzed data collected with the Rossi X-ray Timing Explorer (RXTE) the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Swift satellite. We report the evolution of the pulse frequency, and the measurement at the time of the onset of the 2009 January outburst of an insignificant jump in frequency, but a major frequency derivative jump $\Delta {\dot{ u }}$ of +(1.30 ± 0.14) × 10-11 Hz s-1 ($\Delta \dot{ u }/\dot{ u }$ of -0.69 ± 0.07). Before this $\dot{ u }$ glitch, a single broad pulse is detected, mainly for energies below ~10 keV. Surprisingly, ~11 days after the glitch a new transient high-energy (up to ~150 keV) pulse appears with a Gaussian shape and width 0.23, shifted in phase by ~0.31 compared to the low-energy pulse, which smoothly fades to undetectable levels in ~350 days. We report the evolution of the pulsed-emission spectra. For energies 2.5-10 keV all pulsed spectra are very soft with photon indices Γ between -4.6 and -3.9. For ~10-150 keV, after the $\dot{ u }$ glitch, we report hard non-thermal pulsed spectra, similar to what has been reported for the persistent pulsed emission of some anomalous X-ray pulsars. This pulsed hard X-ray emission reached maximal luminosity 70 ± 30 days after the glitch epoch, followed by a gradual decrease by more than a factor of 10 over ~300 days. These characteristics differ from those of the total emission. Both, the total soft X-ray (1-10 keV) and hard X-ray (10-150 keV) fluxes, were maximal already 2 days after the 2009 January outburst, and decayed by a factor of gsim3 over ~400 days. The total spectra can be described with a blackbody (kT values varying in the range 0.57-0.74 keV) plus a single power-law model. The photon index exhibited a hardening (~ - 1.4 to ~ - 0.9) with time, correlated with a decrease in flux in the 20-300 keV band. We discuss these findings in the framework of the magnetar model.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the radiative outbursts in 2008 October and 2009 January.
Abstract: We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative upsilon-dot, such that upsilon-dot-dot was a factor of 60 larger than that reported in data from 2007. This upsilon-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, upsilon-dot-dot was consistent with zero, and upsilon-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening approx 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.

54 citations

Journal ArticleDOI
TL;DR: A radio pulsar with a spin period of 23.5 s was discovered by the LOFAR Tied-Array All-Sky Survey (LOTAAS), an all-Northern-sky survey for pulsars and fast transients at a central observing frequency of 135 MHz.
Abstract: We present the discovery of PSR J0250+5854, a radio pulsar with a spin period of 23.5 s. This is the slowest-spinning radio pulsar known. PSR J0250+5854 was discovered by the LOFAR Tied-Array All-Sky Survey (LOTAAS), an all-Northern-sky survey for pulsars and fast transients at a central observing frequency of 135 MHz. We subsequently detected pulsations from the pulsar in the interferometric images of the LOFAR Two-metre Sky Survey, allowing for sub-arcsecond localization. This, along with a pre-discovery detection 2 years prior, allowed us to measure the spin-period derivative to be $\dot{P}=2.7 \times 10^{-14}$ s s$^{-1}$. The observed spin period derivative of PSR J0250+5854 indicates a surface magnetic field strength, characteristic age and spin-down luminosity of $2.6 \times 10^{13}$G, $13.7$ Myr and $8.2 \times 10^{28}$ erg s$^{-1}$ respectively, for a dipolar magnetic field configuration. This also places the pulsar beyond the conventional pulsar death line, where radio emission is expected to cease. The spin period of PSR J0250+5854 is similar to those of the high-energy-emitting magnetars and X-ray dim isolated neutron stars (XDINSs). However, the pulsar was not detected by the Swift/XRT in the energy band of 0.3-10 keV, placing a bolometric luminosity limit of $1.5 \times 10^{32}$ erg s$^{-1}$ for an assumed $N_{\rm H}=1.35\times10^{21}$ cm$^{-2}$ and a temperature of 85 eV (typical of XDINSs). We discuss the implications of the discovery for models of the pulsar death line as well as the prospect of finding more similarly long-period pulsars, including the advantages provided by LOTAAS for this.

54 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142