scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors study coupled axial and polar axisymmetric oscillations of a neutron star endowed with a strong magnetic field, having both poloidal and toroidal components.
Abstract: We study coupled axial and polar axisymmetric oscillations of a neutron star endowed with a strong magnetic field, having both poloidal and toroidal components. The toroidal component of the magnetic field is driving the coupling between the polar and axial oscillations. The star is composed of a fluid core as well as a solid crust. Using a two-dimensional general relativistic simulation and a magnetic field B= 1016 G, we study the change in the polar and axial spectrum caused by the coupling. We find that the axial spectrum suffers a dramatic change in its nature, losing its continuum character. In fact, we find that only the ‘edges’ of the continua survive, generating a discrete spectrum. As a consequence the crustal frequencies, which in our previous simulation could be absorbed by the continua, if they were embedded inside it, are now long-living oscillations. They may lose their energy only in the very special case that they are in resonance with the ‘edges’ of the continua.

38 citations

Journal ArticleDOI
TL;DR: In this article, the early peak and late-time slow decay displayed in the light curves of both SNe 1998bw (associated with GRB 980425) and 2002ap (not GRB-associated) can be attributed to magnetar spin-down with initial rotation period P0 \\sim 20 ms, while the intermediate-time (50 \\lesssim t \\lessim 300 days) linear decline is caused by radioactive decay of 56Ni.
Abstract: Broad-lined type Ic supernovae (SNe Ic-BL) are peculiar stellar explosions that distinguish themselves from ordinary SNe. Some SNe Ic-BL are associated with long-duration (\\gtrsim 2 s) gamma-ray bursts (GRBs). Black holes and magnetars are two types of compact objects that are hypothesized to be central engines of GRBs. In spite of decades of investigations, no direct evidence for the formation of black holes or magnetars has been found for GRBs so far. Here we report the finding that the early peak (t \\lesssim 50 days) and late-time (t \\gtrsim 300 days) slow decay displayed in the light curves of both SNe 1998bw (associated with GRB 980425) and 2002ap (not GRB-associated) can be attributed to magnetar spin-down with initial rotation period P0 \\sim 20 ms, while the intermediate-time (50 \\lesssim t \\lesssim 300 days) linear decline is caused by radioactive decay of 56Ni. The connection between the early peak and late-time slow decline in the light curves is unexpected in alternative models. We thus suggest that GRB 980425 and SN 2002ap were powered by magnetars.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the cosmological background of gravitational waves produced by magnetars, when they are very young and fast spinning, is derived based on a numerical model of the cosmic star formation history, and the strongest signals are generated for magnetars with very intense toroidal internal fields and external dipole fields.
Abstract: Two classes of high energy sources in our galaxy are believed to host magnetars, neutron stars whose emission results from the dissipation of their magnetic field. The extremely high magnetic field of magnetars distorts their shape, and causes the emission of a conspicuous gravitational waves signal if rotation is fast and takes place around a different axis than the symmetry axis of the magnetic distortion. Based on a numerical model of the cosmic star formation history, we derive the cosmological background of gravitational waves produced by magnetars, when they are very young and fast spinning. We adopt different models for the configuration and strength of the internal magnetic field (which determines the distortion) as well as different values of the external dipole field strength (which governs the spin evolution of magnetars over a wide range of parameters). We find that the expected gravitational wave background differs considerably from one model to another. The strongest signals are generated for magnetars with very intense toroidal internal fields ($\sim 10^{16}$ G range) and external dipole fields of $\sim 10^{14}$, as envisaged in models aimed at explaining the properties of the Dec 2004 giant flare from SGR 1806-20. Such signals should be easily detectable with third generation ground based interferometers such as the Einstein Telescope.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres, and conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission.
Abstract: We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr−1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

38 citations

Journal ArticleDOI
TL;DR: In this paper, an optical spectrum of the Type Ib supernova 2012au obtained at an unprecedented epoch of 6.2 years after explosion is presented, where forbidden transition emission lines of oxygen and sulfur are detected with expansion velocities of 2300 km/s.
Abstract: We present an optical spectrum of the energetic Type Ib supernova (SN) 2012au obtained at an unprecedented epoch of 6.2 years after explosion. Forbidden transition emission lines of oxygen and sulfur are detected with expansion velocities of 2300 km/s. The lack of narrow H Balmer lines suggests that interaction with circumstellar material is not a dominant source of the observed late-time emission. We also present a deep Chandra observation that reveals no X-ray emission down to a luminosity of L_X < 2 x 10^{38} erg/s (0.5-10 keV). Our findings are consistent with the notion that SN 2012au is associated with a diverse subset of SNe, including long-duration gamma-ray burst SNe and superluminous SNe, harboring pulsar/magnetar wind nebulae that influence core-collapse explosion dynamics on a wide range of energy scales. We hypothesize that these systems may all evolve into a similar late-time phase dominated by forbidden oxygen transitions, and predict that emission line widths should remain constant or broaden a few per cent per year due to the acceleration of ejecta by the pulsar/magnetar bubble.

38 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142