scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors carried out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma ray data and found no flash events at high Galactic latitude region (|b|>20 deg).
Abstract: Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi \equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the mass distribution of superluminous supernovae (SLSNe) progenitors is analyzed from uniformly modelled light curves of 62 events, using magnetar light curve models presented in previous works.
Abstract: Despite indications that superluminous supernovae (SLSNe) originate from massive progenitors, the lack of a uniformly analyzed statistical sample has so far prevented a detailed view of the progenitor mass distribution. Here we present and analyze the pre-explosion mass distribution of hydrogen-poor SLSN progenitors as determined from uniformly modelled light curves of 62 events. We construct the distribution by summing the ejecta mass posteriors of each event, using magnetar light curve models presented in our previous works (and using a nominal neutron star remnant mass). The resulting distribution spans $3.6-40$ M$_{\odot}$, with a sharp decline at lower masses, and is best fit by a broken power law described by ${\rm d}N/{\rm dlog}M \propto M^{-0.41 \pm 0.06}$ at $3.6-8.6$ M$_{\odot}$ and $\propto M^{-1.26 \pm 0.06}$ at $8.6-40$ M$_{\odot}$. We find that observational selection effects cannot account for the shape of the distribution. Relative to Type Ib/c SNe, the SLSN mass distribution extends to much larger masses and has a different power-law shape, likely indicating that the formation of a magnetar allows more massive stars to explode as some of the rotational energy accelerates the ejecta. Comparing the SLSN distribution with predictions from single and binary star evolution models, we find that binary models for a metallicity of $Z\lesssim 1/3$ Z$_{\odot}$ are best able to reproduce its broad shape, in agreement with the preference of SLSNe for low metallicity environments. Finally, we uncover a correlation between the pre-explosion mass and the magnetar initial spin period, where SLSNe with low masses have slower spins, a trend broadly consistent with the effects of angular momentum transport evident in models of rapidly-rotating carbon-oxygen stars.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the electron-positron plasma generation processes in the magnetospheres of magnetars were considered, and it was shown that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons.
Abstract: We consider the electron—positron plasma generation processes in the magnetospheres of magnetars—neutron stars with strong surface magnetic fields, B ≃ 1014–1015 G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the $$ P - \dot P $$ diagram that defines the plasma generation threshold in a magnetar magnetosphere.

34 citations

Journal ArticleDOI
TL;DR: In this paper, anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are enigmatic pulsar-like objects.
Abstract: Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are enigmatic pulsar-like objects. The energy budget is the fundamental problem in their studies. In the magnetar model, they are supposed to be powered by the extremely strong magnetic fields (≳ 1014G) of neutron stars. Observations for and against the magnetar model are both summarized. Considering the difficulties encountered by the magnetar model to comfortably understand more and more observations, one may doubt that AXPs and SGRs are really magnetars. If they are not magnetar candidates (including magnetar-based models), then they must be "quark star/fallback disk" systems.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source.
Abstract: Swift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18-140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8 - 25)E38 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

34 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142