scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors show that the repeating fast radio burst 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar.
Abstract: Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to. The range of timescales and luminosities measured from the nearby fast radio burst FRB 20200120E observationally connects these extreme extragalactic transients with studies of Galactic neutron stars.

32 citations

Journal ArticleDOI
TL;DR: In this article, a lower bound of the spin down rate of a white dwarf close to its maximum stable mass was obtained for the AXP prototype 1E 2259+586 and a lower limit for Swift J1822.3-1606 for which a fully observationally accepted spindown rate is still lacking.
Abstract: Following Malheiro et al. (2012) we describe the so-called low magnetic field magnetars, SGR 0418+5729, Swift J1822.3‐1606, as well as the AXP prototype 1E 2259+586 as massive fast rotating highly magnetized white dwarfs. We give bounds for the mass, radius, moment of inertia, and magnetic field for these sourc es by requesting the stability of realistic general relativ istic uniformly rotating configurations. Based on these parameters, we impr ove the theoretical prediction of the lower limit of the spin down rate of SGR 0418+5729; for a white dwarf close to its maximum stable we obtain the very stringent interval for the spindown rate of 4.1× 10 −16 < ˙ P < 6× 10 −15 , where the upper value is the known observational limit. A lower limit has been also set for Swift J1822.3-1606 for which a fully observationally accepted spin-down rate is still lacking. The white dwarf model provides for this source ˙ P≥ 2.13× 10 −15 , if the star is close to its maximum stable mass. We also present the theoretical expectation of the infrared, optical and ultraviolet emission of these objects and show their consistency with the current available observational data. We give in addition the frequencies at which absorption features could be present in the spectrum of these sources as the result of t he scattering of photons with the quantized electrons by the surface magnetic field.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from Kirmizibayrak et al. detected with the Rossi X-ray Timing Explorer (RXTE).
Abstract: In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from Kirmizibayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that the fluence distributions of magnetar bursts are well described by power-law functions with indices 1.84, 1.68, and 1.65 for SGR J1550-5418, SGR 1806-20 and SGR 1900+14, respectively. The duration distributions of magnetar bursts also show power-law forms. Meanwhile, the waiting time distribution can be described by a non-stationary Poisson process with an exponentially growing occurrence rate. These distributive features indicate that magnetar bursts can be regarded as a self-organizing critical process. We also compare these distributions with the repeating FRB 121102. The statistical properties of repeating FRB 121102 are similar with magentar bursts, combing with the large required magnetic filed ($B\geq 10^{14}$G) of neutron star for FRB 121102, which indicates that the central engine of FRB 121102 may be a magnetar.

32 citations

Journal ArticleDOI
TL;DR: Observations of the γ-ray burst GRB 200415A have a rapid onset, very fast time variability, flat spectra and substantial sub-millisecond spectral evolution, which match well with those expected for a giant flare from an extragalactic magnetar.
Abstract: Magnetars are slowly-rotating neutron stars with extremely strong magnetic fields ($10^{13-15}$ G), episodically emitting $\sim100$ ms long X-ray bursts with energies of $\sim10^{40-41}$ erg. Rarely, they produce extremely bright, energetic giant flares that begin with a short ($\sim0.2$ s), intense flash, followed by fainter, longer lasting emission modulated by the magnetar spin period (typically 2-12 s), thus confirming their origin. Over the last 40 years, only three such flares have been observed in our local group; they all suffered from instrumental saturation due to their extreme intensity. It has been proposed that extra-galactic giant flares likely constitute a subset of short gamma-ray bursts, noting that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, while the initial bright flash is readily observable out to distances $\sim 10-20$ Mpc. Here, we report X- and gamma-ray observations of GRB 200415A, which exhibits a rapid onset, very fast time variability, flat spectra and significant sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extra-galactic magnetar, noting that GRB 200415A is directionally associated with the galaxy NGC 253 ($\sim$3.5 Mpc away). The detection of $\sim3$ MeV photons provides definitive evidence for relativistic motion of the emitting plasma. The observed rapid spectral evolution can naturally be generated by radiation emanating from such rapidly-moving gas in a rotating magnetar.

32 citations

Journal ArticleDOI
TL;DR: In this article, the mean time-dependent neutrino annihilation luminosity with the different mean accretion rates and initial BH parameters was analyzed for short-duration and long-duration gamma-ray burst.
Abstract: A neutrino-dominated accretion disk around a stellar-mass black hole (BH) can power a gamma-ray burst (GRB) via annihilation of neutrinos launched from the disk. For the BH hyperaccretion system, high accretion rate should trigger the violent evolution of the BH's characteristics, which further leads to the evolution of the neutrino annihilation luminosity. In this paper, we consider the evolution of the accretion system to analyze the mean time-dependent neutrino annihilation luminosity with the different mean accretion rates and initial BH parameters. By time-integrating the luminosity, the total neutrino annihilation energy with the reasonable initial disk mass can satisfy the most of short-duration GRBs and about half of long-duration GRBs. Moreover, the extreme Kerr BH should exist in the cental engines of some high-luminosity GRBs. GRBs with higher energy have to request the alternative magnetohydrodynamics processes in the centers, such as the Blandford-Znajek jet from the accretion system or the millisecond magnetar.

32 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142