scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors model the magnitude of the pulsar's modulation in narrow spectral bands over time and constrain an allowed range for the angles that the line-of-sight (psi) and the hot spot pole (xi) make with respect to the spin axis.
Abstract: The temporal decay of the flux components of Transient Anomalous X-ray Pulsar XTE J1810-197 following its 2002 outburst presents a unique opportunity to probe the emission geometry of a magnetar. Toward this goal, we model the magnitude of the pulsar's modulation in narrow spectral bands over time. Following previous work, we assume that the post-outburst flux is produced in two distinct thermal components arising from a hot spot and a warm concentric ring. We include general relativistic effects on the blackbody spectra due to gravitational redshift and light bending near the stellar surface, which strongly depend on radius. This affects the model fits for the temperature and size of the emission regions. For the hot spot, the observed temporal and energy-dependent pulse modulation is found to require an anisotropic, pencil-beamed radiation pattern. We are able to constrain an allowed range for the angles that the line-of-sight (psi) and the hot spot pole (xi) make with respect to the spin-axis. Within errors, this is defined by the locus of points in the xi-psi plane that lie along the line (xi+beta(R))(psi+beta(R)) ~ constant, where beta(R) is a function of the radius R of the star. For a canonical value of R=12 km, the viewing parameters range from psi=xi=37 deg to (psi,xi)=(85 deg,15 deg). We discuss our results in the context of magnetar emission models.

31 citations

Journal ArticleDOI
Z. F. Gao1, Na Wang1, Ye Xu1, Hao Shan1, Xiang-Dong Li2 
TL;DR: By introducing Dirac's function in super high magnetic fields, this paper deduced a general formula for the pressure of degenerate and relativistic electrons, P-e, which is suitable for superhigh magnetic fields and discussed the quantization of Landau levels of electrons, and considered the quantum electrodynamic (QED) effects on the equations of states (EOSs) for different matter systems.
Abstract: By introducing Dirac's -function in superhigh magnetic fields, we deduce a general formula for the pressure of degenerate and relativistic electrons, P-e, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic(QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: the stronger the magnetic field strength, the higher the electron pressure becomes; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EoS of the star. Since this is an original work in which some uncertainties could exist, modifications and improvements of our theory should be considered in our future studies. ((c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

30 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo, which is characterized by a peak magnitude of M r = −17.98, a peak bolometric luminosity of ~1.4 × 1043 erg s−1, and a rapid decline rate of 0.48 ± 0.03 mag day−1 in the r band.
Abstract: We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of M r = −17.98, a peak bolometric luminosity of ~1.4 × 1043 erg s−1, and a rapid decline rate of 0.48 ± 0.03 mag day−1 in the r band. The bolometric luminosity evolves too quickly to be explained by pure 56Ni heating, necessitating the inclusion of an alternative powering source. Incorporating the spin-down of a magnetized neutron star adequately describes the lightcurve and we estimate a small ejecta mass of M ej = 0.10 ± 0.05 M ⊙. Our spectral modeling suggests the ejecta is composed of intermediate mass elements including O, Si, and Mg and trace amounts of Fe-peak elements, which disfavors a binary neutron star merger. We discuss three explosion scenarios for SN2018kzr, given the low ejecta mass, intermediate mass element composition, and high likelihood of additional powering—the core collapse of an ultra-stripped progenitor, the accretion induced collapse (AIC) of a white dwarf, and the merger of a white dwarf and neutron star. The requirement for an alternative input energy source favors either the AIC with magnetar powering or a white dwarf–neutron star merger with energy from disk wind shocks.

30 citations

Journal ArticleDOI
TL;DR: In this paper , a set of 1,863 bursts from the repeating source FRB 20201124A provides evidence of a complicated magnetized site within about an astronomical unit from the source in a barred galaxy.
Abstract: Fast radio bursts (FRBs) are highly dispersed, millisecond-duration radio bursts1–3. Recent observations of a Galactic FRB4–8 suggest that at least some FRBs originate from magnetars, but the origin of cosmological FRBs is still not settled. Here we report the detection of 1,863 bursts in 82 h over 54 days from the repeating source FRB 20201124A (ref. 9). These observations show irregular short-time variation of the Faraday rotation measure (RM), which scrutinizes the density-weighted line-of-sight magnetic field strength, of individual bursts during the first 36 days, followed by a constant RM. We detected circular polarization in more than half of the burst sample, including one burst reaching a high fractional circular polarization of 75%. Oscillations in fractional linear and circular polarizations, as well as polarization angle as a function of wavelength, were detected. All of these features provide evidence for a complicated, dynamically evolving, magnetized immediate environment within about an astronomical unit (au; Earth–Sun distance) of the source. Our optical observations of its Milky-Way-sized, metal-rich host galaxy10–12 show a barred spiral, with the FRB source residing in a low-stellar-density interarm region at an intermediate galactocentric distance. This environment is inconsistent with a young magnetar engine formed during an extreme explosion of a massive star that resulted in a long gamma-ray burst or superluminous supernova. Analysis of a set of 1,863 bursts from the repeating source FRB 20201124A provides evidence of a complicated magnetized site within about an astronomical unit from the source in a barred galaxy.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the pulsar spin-down model of Contopoulos and Spitkovsky is applied to SGR 418+5729 and it is shown that SGR lies below the pulsars death line and its rotation-powered magnetospheric activities may therefore have stopped and the compact star is now spun down by the magnetic dipole moment perpendicular to its rotation axis.
Abstract: The spin-down behaviors of SGR 0418+5729 are investigated. The pulsar spin-down model of Contopoulos and Spitkovsky is applied to SGR 0418+5729. It is shown that SGR 0418+5729 lies below the pulsar death line and its rotation-powered magnetospheric activities may therefore have stopped. The compact star is now spun down by the magnetic dipole moment perpendicular to its rotation axis. Our calculations show that under these assumptions there is the possibility of SGR 0418+5729 having a strong dipole magnetic field, if there is a small magnetic inclination angle. Its dipole magnetic field may be much higher than the characteristic magnetic field. Therefore, SGR 0418+5729 may be a normal magnetar instead of a low magnetic field magnetar.

30 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142