scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events.
Abstract: Long-duration gamma-ray bursts (GRBs) are widely believed to be highly-collimated explosions (opening angle theta ~ 1-10 deg). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a "jet" break), has proven exceedingly difficult in the Swift era. Here we undertake a study of five of the brightest (in terms of the isotropic prompt gamma-ray energy release, E(gamma, iso)) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet break in all five events, strongly supporting the canonical picture of GRBs as collimated explosions. The most natural explanation for the lack of observed jet breaks from most Swift GRBs is therefore selection effects. However, the opening angles for the events in our sample are larger than would be expected if all GRBs had a canonical energy release of ~ 10e51 erg. The total energy release we measure for those "hyper-energetic" (E(total) >~ 10e52 erg) events in our sample is large enough to start challenging models with a magnetar as the compact central remnant.

148 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves in the early days after formation, which is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be ≤ 10 51 erg.
Abstract: We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be ≤ 10 51 erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate ∼ 1 yr ―1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 10 16 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 10 3 yr, during which the core temperature stays higher than several times 10 8 K.

146 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of wind accretion in high-mass X-ray binaries hosting a magnetic neutron star and a supergiant companion was surveyed and the conditions under which transition from one regime to another can take place.
Abstract: In this paper we survey the theory of wind accretion in high mass X-ray binaries hosting a magnetic neutron star and a supergiant companion. We concentrate on the different types of interaction between the inflowing wind matter and the neutron star magnetosphere that are relevant when accretion of matter onto the neutron star surface is largely inhibited; these include the inhibition through the centrifugal and magnetic barriers. Expanding on earlier work, we calculate the expected luminosity for each regime and derive the conditions under which transition from one regime to another can take place. We show that very large luminosity swings (~10^4 or more on time scales as short as hours) can result from transitions across different regimes. The activity displayed by supergiant fast X-ray transients, a recently discovered class of high mass X-ray binaries in our galaxy, has often been interpreted in terms of direct accretion onto a neutron star immersed in an extremely clumpy stellar wind. We show here that the transitions across the magnetic and/or centrifugal barriers can explain the variability properties of these sources as a results of relatively modest variations in the stellar wind velocity and/or density. According to this interpretation we expect that supergiant fast X-ray transients which display very large luminosity swings and host a slowly spinning neutron star are characterized by magnetar-like fields, irrespective of whether the magnetic or the centrifugal barrier applies. Supergiant fast X-ray transients might thus provide a new opportunity to detect and study magnetars in binary systems.

146 citations

Journal ArticleDOI
30 May 2013-Nature
TL;DR: X-ray timing observations of the magnetar 1E 2259+586 exhibited a clear ‘anti-glitch’—a sudden spin-down, supporting the need for a rethinking of glitch theory for all neutron stars.
Abstract: Magnetars are neutron stars with X-ray and soft γ-ray outbursts thought to be powered by intense internal magnetic fields. Like conventional neutron stars in the form of radio pulsars, magnetars exhibit 'glitches' during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust. The several hundred observed glitches in radio pulsars and magnetars have involved a sudden spin-up (increase in the angular velocity) of the star, presumably because the interior superfluid was rotating faster than the crust. Here we report X-ray timing observations of the magnetar 1E 2259+586 (ref. 8), which exhibited a clear 'anti-glitch'--a sudden spin-down. We show that this event, like some previous magnetar spin-up glitches, was accompanied by multiple X-ray radiative changes and a significant spin-down rate change. Such behaviour is not predicted by models of neutron star spin-down and, if of internal origin, is suggestive of differential rotation in the magnetar, supporting the need for a rethinking of glitch theory for all neutron stars.

146 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the pulsar's dispersion measure to be 1650 +/- 50 pc/cm^3, the highest of any of the known pulsars.
Abstract: We have carried out observations of the newly-discovered magnetar in the direction of Sagittarius A* using the Australia Telescope Compact Array in four frequency bands from 4.5 to 20 GHz. Radio pulsations are clearly detected at all frequencies. We measure the pulsar's dispersion measure to be 1650 +/- 50 pc/cm^3, the highest of any of the known pulsars. Once Faraday rotation has been taken into account, the pulse profile is more than 80% linearly polarized at all frequencies and has a small degree (5%) of circular polarization. The rotation measure of -67000 +/- 500$ rad/m^2 is the largest (in magnitude) ever measured for a pulsar but still a factor 8 smaller than Sgr A* itself. The combination of the dispersion and rotation measures implies an integrated magnetic field strength of -50uG along the line of sight. The flux density appears to have increased by about a factor of two between observations made 30 days apart. This object therefore joins the small class of radio emitting magnetars.

145 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023139
2022294
2021189
2020264
2019143