scispace - formally typeset
Search or ask a question
Topic

Magnetar

About: Magnetar is a research topic. Over the lifetime, 2905 publications have been published within this topic receiving 106806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127 was reported, heralded by two short bright Xray bursts on 2016 July 27 and 28.
Abstract: Radio pulsars are believed to have their emission powered by the loss of rotational kinetic energy. By contrast, magnetars show intense X-ray and γ-ray radiation whose luminosity greatly exceeds that due to spin down and magnetar luminosity is believed to be powered by intense internal magnetic fields. A basic prediction of this picture is that radio pulsars of high magnetic field should show magnetar-like emission. Here we report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119–6127, heralded by two short bright X-ray bursts on 2016 July 27 and 28. Using target of opportunity data from the Swift X-ray Telescope and NuSTAR, we show that this pulsar's flux has brightened by a factor of >160 in the 0.5–10 keV band, and that its previously soft X-ray spectrum has undergone a strong hardening with strong pulsations appearing for the first time above 2.5 keV, with phase-averaged emission detectable up to 25 keV. By comparing Swift-XRT and NuSTAR timing data with a pre-outburst ephemeris derived from Fermi Large Area Telescope data, we find that the source has contemporaneously undergone a large spin-up glitch of amplitude Δν/ν = 5.74(8) x 10^(-6). The collection of phenomena observed thus far in this outburst strongly mirrors those in most magnetar outbursts and provides an unambiguous connection between the radio pulsar and magnetar populations.

96 citations

Journal ArticleDOI
TL;DR: In this paper, a large set of numerical relativity simulations was used to study the formation of long-lived massive neutron star (NS) with lifetimes of at least several seconds.
Abstract: Massive neutron star (NS) with lifetimes of at least several seconds are expected to be the result of a sizable fraction of NS mergers. We study their formation using a large set of numerical relativity simulations. We show that they are initially endowed with angular momentum that significantly exceeds the mass-shedding limit for rigidly-rotating equilibria. We find that gravitational-wave (GW) emission is not able to remove this excess angular momentum within the time over which solid body rotation should be achieved. Instead, we argue that the excess angular momentum could be carried away by massive winds. Long-lived merger remnants are also formed with larger gravitational masses than those of rigidly-rotating NSs having the same number of baryons. The excess mass is likely radiated in the form of neutrinos. The evolution of long-lived remnants on the viscous timescale is thus determined by the interplay of finite-temperature effects, mass ejection, and neutrinos with potentially dramatic consequences for the remnants' properties and stability. We also provide an empirical fit for the spin of the remnant at the end of its viscous evolution as a function of its final mass, and we discuss the implications for the magnetar model of short gamma-ray bursts (SGRBs). Finally, we investigate the possible electromagnetic signatures associated with the viscous ejecta. Massive outflows possibly resulting from the formation of long-lived remnants would power unusually bright, blue kilonova counterparts to GW events and SGRBs whose detection would provide smoking gun evidence for the formation of long-lived remnants.

96 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that strong line emission can be attributed to the interaction of a continuing (but decaying) post-burst relativistic outflow from the central engine with the progenitor stellar envelope at distances less than a light-hour.
Abstract: The recent report of X-ray Fe features in the afterglow of the gamma-ray burst GRB 991216 may provide important clues for identifying the nature of its progenitor and constraining the burst mechanism. We argue that the strong line emission can be attributed to the interaction of a continuing (but decaying) post-burst relativistic outflow from the central engine with the progenitor stellar envelope at distances less than a light-hour. Only a small mass of Fe is then required, which could have been readily produced by the star itself.

96 citations

Journal ArticleDOI
TL;DR: In this article, a 3.5 s burst peak was detected with RXTE and BATSE, followed by a long (~ 1000 s) periodic tail modulated at the 5.16 s stellar rotation period, and the spectral and temporal signatures of this event imply that the precursor, main peak and extended tail are produced by different physical mechanisms.
Abstract: The Soft Gamma Repeater SGR 1900+14 entered a remarkable phase of activity during the summer of 1998. This activity peaked on August 27, 1998 when a giant periodic gamma-ray flare resembling the famous March 5, 1979 event from SGR 0526-66 was recorded. Two days later (August 29), a strong, bright burst was detected with RXTE and BATSE. This event reveals several similarities to the giant flares of August 27 and March 5, and shows a number of unique features not previously seen in SGR bursts. Unlike typically short SGR bursts, this event features a 3.5 s burst peak that was preceded by an extended (~ 1 s) complex precursor, and followed by a long (~ 1000 s) periodic tail modulated at the 5.16 s stellar rotation period. Spectral analysis shows a striking distinction between the spectral behavior of the precursor, burst peak and extended tail. While the spectrum during the peak is uniform, a significant spectral evolution is detected in both the precursor and tail emissions. Temporal behavior shows a sharp rise (~ 9.8 ms) at the event onset and a rapid cutoff (~ 17 ms) at the end of the burst peak. The tail pulsations show a simple pulse profile consisting of one 5.16 s peak that did not evolve with time. The spectral and temporal signatures of this event imply that the precursor, main peak, and extended tail are produced by different physical mechanisms. We discuss these features and their implications in the context of the magnetar model. The energetics of the August 29 event, and its close proximity to the August 27 flare, suggest that it is an `aftershock' of the preceding giant flare. "P.S. This is an abbreviated version of the original abstract."

96 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of anomalous X-ray Pulsar 1E 1048.1-5937 was presented.
Abstract: After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

96 citations


Network Information
Related Topics (5)
Active galactic nucleus
20.7K papers, 996.7K citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Luminosity
26.3K papers, 1.1M citations
95% related
Quasar
21.3K papers, 1M citations
95% related
Star formation
37.4K papers, 1.8M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023137
2022292
2021189
2020257
2019142