scispace - formally typeset
Search or ask a question
Topic

Magnetic anisotropy

About: Magnetic anisotropy is a research topic. Over the lifetime, 36978 publications have been published within this topic receiving 686556 citations.


Papers
More filters
Journal ArticleDOI
01 Apr 1982
TL;DR: Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization as discussed by the authors.
Abstract: Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization. In massive ore it is due to processes associated with emplacement and consolidation of an ore body as well as to ductile deformation. Hence, it can be used as a tool of structural analysis for almost all rock types. Morcover, it can influence considerably the orientation of the remanent magnetization vector as well as the configuration of a magnetic anomaly over a magnetized body. For these reasons it should be investigated in palaeomagnetism and applied geophysics as well.

1,052 citations

Journal ArticleDOI
TL;DR: How currents can generate torques that affect the magnetic orientation and the reciprocal effect in a wide variety of magnetic materials and structures is explained.
Abstract: The magnetization of a magnetic material can be reversed by using electric currents that transport spin angular momentum. In the reciprocal process a changing magnetization orientation produces currents that transport spin angular momentum. Understanding how these processes occur reveals the intricate connection between magnetization and spin transport, and can transform technologies that generate, store or process information via the magnetization direction. Here we explain how currents can generate torques that affect the magnetic orientation and the reciprocal effect in a wide variety of magnetic materials and structures. We also discuss recent state-of-the-art demonstrations of current-induced torque devices that show great promise for enhancing the functionality of semiconductor devices.

1,049 citations

Journal ArticleDOI
H. C. Torrey1
TL;DR: In this article, the phenomenological Bloch equations in nuclear magnetic resonance are generalized by the addition of terms due to the transfer of magnetization by diffusion, and the revised equations describe phenomena under conditions of inhomogeneity in magnetic field, relaxation rates, or initial magnetization.
Abstract: The phenomenological Bloch equations in nuclear magnetic resonance are generalized by the addition of terms due to the transfer of magnetization by diffusion. The revised equations describe phenomena under conditions of inhomogeneity in magnetic field, relaxation rates, or initial magnetization. As an example the equations are solved in the case of the free precession of magnetic moment in the presence of an inhomogeneous magnetic field following the application of a 90\ifmmode^\circ\else\textdegree\fi{} pulse with subsequent applications of a succession of 180\ifmmode^\circ\else\textdegree\fi{} pulses. The spin-echo amplitudes agree with the results of Carr and Purcell from a random walk theory.

1,026 citations

Book
30 Nov 1996
TL;DR: In this paper, an analysis of Ferromagnetic Resonance in anisotropic Ferromagnet Magnetocrystalline Anisotropy originates from the origin of magnetically active materials.
Abstract: Isotropic Ferromagnet Magnetized to Saturation Ferromagnetism Elementary Magnetic Moments Paramagnetism Weiss Theory Exchange Interaction Equation of Motion of Magnetization High-Frequency Magnetic Susceptibility Solution of the Linearized Equation of Motion Peculiarities of the Susceptibility Tensor High-Frequency Permeability Allowance for Magnetic Losses Dissipative Terms and Dissipation Parameters Susceptibility Tensor Components Uniform Oscillations in a Small Ellipsoid Internal and External Magnetic Fields Eigenoscillations Forced Oscillations Anisotropic Ferromagnet Landau-Lifshitz Equation Generalization of Equation of Motion Methods of Analysis of Ferromagnetic Resonance in Anisotropic Ferromagnet Magnetocrystalline Anisotropy Origins of Magnetocrystalline Anisotropy Phenomenological Description Equilibrium Orientations of Magnetization Ferromagnetic Resonance in a Single Crystal Sphere of Uniaxial Ferromagnet Sphere of a Cubic Ferromagnet Simultaneous Allowance for Different Kinds of Anisotropy Ferromagnetic Resonance in a Polycrystal Independent-Grain and Strongly-Coupled Grain Approximations Influence of Porosity Antiferromagnets and Ferrites Antiferromagnetism and Ferrimagnetism Crystal and Magnetic Structures Equations of Motion and Energy Terms Ground States and Small Oscillations Antiferromagnetic Resonance Antiferromagnet with an Easy Axis of Anisotropy: Steady States Oscillations in Antiparallel State Oscillations in Noncollinear State Oscillations in Transverse and Arbitrarily Oriented Fields Antiferromagnet with Easy Plane of Anisotropy Magnetic Oscillations in Ferrimagnets Ground States of Two-Sublattice Ferrimagnet Oscillations in Antiparallel Ground State Oscillations in Noncollinear Ground State Damped and Forced Oscillations Fundamentals of Electrodynamics of Gyrotropic Media Equations General Equations and Boundary Conditions Equations for Bigyotropic Media Uniform Plane Waves General Relations Longitudinal Magnetization Transverse Magnetization Nonreciprocity Energy Relations Equation of Energy Balance Energy Losses Perturbation Method Gyrotropic Perturbation of a Waveguide Gyrotropic Perturbation of a Resonator Quasistatic Approximation Resonator with Walls of Real Metal Waveguides and Resonators with Gyrotropic Media. Microwave Ferrite Devices Waveguide with Longitudinally Magnetized Medium Circular Waveguide Circular Waveguide with Ferrite Rod Faraday Ferrite Devices Waveguide with Transversely Magnetized Ferrite Rectangular Waveguide Filled with Ferrite Rectangular Waveguide with Ferrite Plates Microwave Ferrite Devices Resonators with Gyrotropic Media Eigenoscillations and Forced Oscillations Waveguide Resonators Ferrite Resonators Use of Perturbation Method Waveguides and Waveguide Junctions with Ferrite Samples Ferrite Ellipsoid in a Waveguide Coupling of Orthogonal Waveguides. Ferrite Band-Pass Filters General Properties of Nonreciprocal Junctions Magnetostatic Waves and Oscillations Magnetostatic Approximation Nonexchange Magnetostatic Waves in Plates and Rods Volume Waves in Plates Surface Waves Magnetostatic Waves in Waveguides with Finite Cross Section Energy Flow and Losses Magnetostatic Waves in Ferrite Films: Excitation, Applications Magnetostatic Oscillations (Walker's Modes) Metallized Cylinder Sphere and Ellipsoid of Revolution Damping, Excitation, and Coupling Spin Waves Spin Waves in Unbounded Ferromagnet Energy and Effective Field of Exchange Interaction Dispersion Law Magnetization, Field Components, and Damping Spin Waves in Bounded Bodies Exchange Boundary Conditions Standing Spin Waves in Films Propagating Spin Waves in Films Spin Waves in Nonuniform Magnetic Fields Magnons Quantization of Magnetic Oscillations and Waves Thermal Magnons Elements of Microscopic Spin-Wave Theory Diagonalization of the Hamiltonian Discussion of the Dispersion Law Allowance for Dipole-Dipole Interaction and Anisotropy Interaction of Magnons Magnetic Oscillations and Waves in Unsaturated Ferromagnet Oscillations of Domain Walls Domain Walls and Domain Structures Equation of Motion of a Domain Wall Dynamic Susceptibility Ferromagnetic Resonance in Samples with Domain Structure Ellipsoid of Uniaxial Ferromagnet Sphere of Cubic Ferromagnet Nonuniform Modes in Unsaturated Samples Nonlinear Oscillations of Magnetization Ferromagnetic Resonance in Strong Alternating Fields Rigorous Solution of Equation of Motion Approximate Methods Harmonic Generation and Frequency Conversion Frequency Doubling Frequency Mixing Parametric Excitation of Magnetic Oscillations and Waves Nonlinear Coupling of Magnetic Modes Thresholds of Parametric Excitation under Transverse Pumping First-Order and Second-Order Instabilities Threshold Fields Effect of Pumping-Field Polarization Longitudinal and Oblique Pumping Longitudinal Pumping Effect of Nonuniformities Oblique Pumping Instability of Nonuniform Modes and Nonuniform Pumping Parametric Excitation of Magnetostatic Oscillations and Waves Ferrite Parametric Amplifier Nonuniform Pumping Above-Threshold State Reaction of Parametric Spin Waves on Pumping Phase Mechanism Nonlinear Damping Stability of the Above-Threshold State Nonlinear Microwave Ferrite Devices Spin-Spin Relaxation Relaxation Processes in Magnetically Ordered Substances Kinds of Relaxation Processes Methods of Theoretical Study Inherent Spin-Spin Processes Three-Magnon Splitting Three-Magnon Confluence Four-Magnon Scattering Inherent Processes for Uniform Precession Experimental Data Two-Magnon Processes Theory of Two-Magnon Processes Disorder in Distribution of Ions over Lattice Sites Anisotropy-Field Variation and Pores in Polycrystals Surface Roughness Magnetoelastic Coupling Elastic Properties and Magnetoelastic Interaction Elastic Waves and Oscillations Magnetoelastic Energy and Equations of Motion Effect of Elastic Stresses on Ferromagnetic Resonance Magnetoelastic Waves Normal Waves Damping and Excitation Magnetoelastic Waves in Nonuniform Steady Magnetic Field Parametric Excitation of Magnetoelastic Waves Longitudinal Pumping of Magnetoelastic Waves Parametric Excitation Caused by Magnetoelastic Coupling Elastic Pumping Spin-Lattice Relaxation Ionic Anisotropy and Relaxation Anisotropy Caused by Impurity Ions Energy Levels of Ions One-Ion Theory of Ferromagnetic-Resonance Anisotropy Near-Crossing Energy Levels Experimental Data Ion Relaxation Processes Transverse Relaxation Longitudinal (Slow) Relaxation Relaxation of Ionic-Level Populations Experimental Data Interaction of Magnetic Oscillations and Waves with Charge Carriers Effect of Charge Carriers in Semiconductors Damping of Magnetic Oscillations Caused by Conductivity Influence of Interionic Electron Transitions Interaction of Spin Waves with Charge Carriers Ferromagnetic Resonance and Spin Waves in Metals Thin-Film Model Theory without Allowance for Exchange Interaction Influence of Exchange Interaction Antiresonance Processes of Magnetic Relaxation Appendices Units and Constants Demagnetization Factors Dirac Delta Function and Kronecker Delta Symbol Bibliography Subject Index to the Bibliography Index

1,022 citations

Journal ArticleDOI
TL;DR: Electrical control of magnetism in a bilayer of CrI3 enables the realization of an electrically driven magnetic phase transition and the observation of the magneto-optical Kerr effect in 2D magnets.
Abstract: Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1–3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4–6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7–9. Owing to their unique magnetic properties10–14, the recently reported two-dimensional magnets provide a new system for studying these features15–19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

1,000 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
98% related
Band gap
86.8K papers, 2.2M citations
90% related
Amorphous solid
117K papers, 2.2M citations
89% related
Thin film
275.5K papers, 4.5M citations
89% related
Magnetic field
167.5K papers, 2.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023297
2022634
2021895
2020940
2019901
2018982