scispace - formally typeset
Search or ask a question
Topic

Magnetic anomaly

About: Magnetic anomaly is a research topic. Over the lifetime, 4252 publications have been published within this topic receiving 120255 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a digital model of the age, spreading rate, and asymmetry at each grid node by linear interpolation between adjacent seafloor isochrons in the direction of spreading.
Abstract: We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.

1,731 citations

Journal ArticleDOI
TL;DR: In this article, the relative widths of the magnetic polarity intervals for the entire Late Cretaceous and Cenozoic have been systematically determined from magnetic profiles from the world's ocean basins.
Abstract: We have constructed a magnetic polarity time scale for the Late Cretaceous and Cenozoic based on an analysis of marine magnetic profiles from the world's ocean basins. This is the first time, since Heirtzler et al. (1968) published their time scale, that the relative widths of the magnetic polarity intervals for the entire Late Cretaceous and Cenozoic have been systematically determined from magnetic profiles. A composite geomagnetic polarity sequence was derived based primarily on data from the South Atlantic. Anomaly spacings in the South Atlantic were constrained by a combination of finite rotation poles and averages of stacked profiles. Fine-scale information was derived from magnetic profiles on faster spreading ridges in the Pacific and Indian Oceans and inserted into the South Ariantic sequence. Based on the assumption that spreading rates in the South Atlantic were smoothly varying but not necessarily constant, a time scale was generated by using a spline function to fit a set of nine age calibration points

1,408 citations

Journal ArticleDOI
01 Jan 1963-Nature

1,175 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the interpretation of a new set of closely spaced marine magnetic profiles that complements previous data in the northeastern and southwestern parts of the South China Sea (Nan Hai) and confirm that seafloor spreading was asymmetric and included at least one ridge jump.
Abstract: We present the interpretation of a new set of closely spaced marine magnetic profiles that complements previous data in the northeastern and southwestern parts of the South China Sea (Nan Hai). This interpretation shows that seafloor spreading was asymmetric and confirms that it included at least one ridge jump. Discontinuities in the seafloor fabric, characterized by large differences in basement depth and roughness, appear to be related to variations in spreading rate. Between anomalies 11 and 7 (32 to 27 Ma), spreading at an intermediate, average full rate of ≈50 mm/yr created relatively smooth basement, now thickly blanketed by sediments. The ridge then jumped to the south and created rough basement, now much shallower and covered with thinner sediments than in the north. This episode lasted from anomaly 6b to anomaly 5c (27 to ≈16 Ma) and the average spreading rate was slower, ≈35 mm/yr. After 27 Ma, spreading appears to have developed first in the eastern part of the basin and to have propagated towards the southwest in two major steps, at the time of anomalies 6b-7, and at the time of anomaly 6. Each step correlates with a variation of the ridge orientation, from nearly E-W to NE-SW, and with a variation in the spreading rate. Spreading appears to have stopped synchronously along the ridge, at about 15.5 Ma. From computed fits of magnetic isochrons, we calculate 10 poles of finite rotation between the times of magnetic anomalies 11 and 5c. The poles permit reconstruction of the Oligo-Miocene movements of Southeast Asian blocks north and south of the South China Sea. Using such reconstructions, we test quantitatively a simple scenario for the opening of the sea in which seafloor spreading results from the extrusion of Indochina relative to South China, in response to the penetration of India into Asia. This alone yields between 500 and 600 km of left-lateral motion on the Red River-Ailao Shan shear zone, with crustal shortening in the San Jiang region and crustal extension in Tonkin. The offset derived from the fit of magnetic isochrons on the South China Sea floor is compatible with the offset of geological markers north and south of the Red River Zone. The first phases of extension of the continental margins of the basin are probably related to motion on the Wang Chao and Three Pagodas Faults, in addition to the Red River Fault. That Indochina rotated at least 12° relative to South China implies that large-scale “domino” models are inadequate to describe the Cenozoic tectonics of Southeast Asia. The cessation of spreading after 16 Ma appears to be roughly synchronous with the final increments of left-lateral shear and normal uplift in the Ailao Shan (18 Ma), as well as with incipient collisions between the Australian and the Eurasian plates. Hence no other causes than the activation of new fault zones within the India-Asia collision zone, north and east of the Red River Fault, and perhaps increased resistance to extrusion along the SE edge of Sundaland, appear to be required to terminate seafloor spreading in the largest marginal basin of the western Pacific and to change the sense of motion on the largest strike-slip fault of SE Asia.

1,135 citations

Journal ArticleDOI
01 Apr 1982
TL;DR: Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization as discussed by the authors.
Abstract: Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization. In massive ore it is due to processes associated with emplacement and consolidation of an ore body as well as to ductile deformation. Hence, it can be used as a tool of structural analysis for almost all rock types. Morcover, it can influence considerably the orientation of the remanent magnetization vector as well as the configuration of a magnetic anomaly over a magnetized body. For these reasons it should be investigated in palaeomagnetism and applied geophysics as well.

1,052 citations


Network Information
Related Topics (5)
Fault (geology)
26.7K papers, 744.5K citations
92% related
Lithosphere
14.5K papers, 723.8K citations
92% related
Crust
20.7K papers, 933.1K citations
91% related
Subduction
22.4K papers, 1.1M citations
90% related
Mantle (geology)
26.1K papers, 1.3M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023115
2022209
202177
202096
2019108
2018120