scispace - formally typeset
Search or ask a question
Topic

Magnetic circuit

About: Magnetic circuit is a research topic. Over the lifetime, 15707 publications have been published within this topic receiving 118099 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the use of magnetic films for miniaturization of planar inductors operating at ultra-high frequencies is reviewed, and magnetic dissipation and their role in limiting the device operation frequency range and quality factor are discussed.

151 citations

Patent
03 Feb 1944
TL;DR: In this paper, the authors describe a method to facilitate and cheapen quantity production of electric circuit components, such as the resistances, and their purpose is to facilitate the manufacture of electric and magnetic circuits.
Abstract: This Invention relates to the manufacture of electrical apparatus, and particularly to the production of electric and magnetic circuits and parts thereof. A principal purpose of the invention is to facilitate and cheapen quantity production of electric circuit components, such as the resistances,...

147 citations

Journal ArticleDOI
TL;DR: In this article, a new switching dc-to-dc converter is synthesized which consist of the least number of storage elements (inductive and capacitive) and switches, and yet truly emulates the ideally desired dc to dc transformer having both input and output currents as pure dc quantities with no ripple.
Abstract: A new switching dc-to-dc converter is synthesized which consist of the least number of storage elements (inductive and capacitive) and switches, and yet truly emulates the ideally desired dc-to-dc transformer having both input and output currents as pure dc quantities with no ripple. This result was facilitated by implementation of a new concept termed integrated magnetics, which leads in some special switching structures to the integration of otherwise independent and separate magnetic components (inductors and transformers) into a single magnetic circuit.

145 citations

Journal ArticleDOI
TL;DR: In this article, an improved magnetic equivalent circuit for calculation of the teeth and yoke flux densities in linear permanent-magnet synchronous motors (LPMSMs) is presented, where the magnetic saturation of iron core is considered by nonlinear elements and an iterative procedure is used to update these elements.
Abstract: The aim of this work is to establish an accurate yet simple method for predicting flux density distribution and iron losses in linear permanent-magnet synchronous motors (LPMSMs) for iterative design procedures. For this purpose, an improved magnetic equivalent circuit for calculation of the teeth and yoke flux densities in the LPMSMs is presented. The magnetic saturation of iron core is considered by nonlinear elements and an iterative procedure is used to update these elements. The armature reaction is also taken into account in the modeling by flux sources located on the teeth of motors. These sources are time dependent and can model every winding configuration. The relative motion between the motor primary and secondary is considered by wisely designing air gap elements simplifying the permeance network construction and preventing permeance matrix distortion during primary motion. Flux densities in different load conditions are calculated by means of the proposed model. The effects of saturation and armature reaction on the flux density distribution are shown in detail. Using these flux densities, iron losses in the motor are examined and its variations versus motor parameters are then studied. All results obtained by proposed model are verified by finite-element method based on an extensive analysis.

144 citations

Journal ArticleDOI
TL;DR: The flux produced by stator winding currents and PMs can be calculated accurately and rapidly using the developed model, taking saturation into account, and aids machine dimensioning without the need for computationally expensive finite-element analysis.
Abstract: This paper proposes a generalized equivalent magnetic circuit model for the design of permanent-magnet (PM) electric machines. Conventional approaches have been applied to PM machine design but may be insufficiently accurate or generalized without taking pole-slot counts into consideration. This would result in reduction of dimensioning accuracy at the initial design stage. Also, magnetic saturation is often ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in individual stator teeth. In this paper, the flux produced by stator winding currents and PMs can be calculated accurately and rapidly using the developed model, taking saturation into account. A new modeling technique for PM poles is proposed so that the magnetic circuit is applicable to any pole-slot combinations. This aids machine dimensioning without the need for computationally expensive finite-element analysis (FEA). A 540-kW PM machine is first designed using the proposed method and then verified with FEA. Another 350-W machine is subsequently designed, manufactured, and validated by both FEA and experiments. The comparisons demonstrate the effectiveness of the proposed model.

141 citations


Network Information
Related Topics (5)
Stator
112.5K papers, 814.8K citations
91% related
Voltage
296.3K papers, 1.7M citations
86% related
Electromagnetic coil
187.8K papers, 1.1M citations
85% related
Capacitor
166.6K papers, 1.4M citations
85% related
Rotor (electric)
179.9K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202359
2022146
2021286
2020462
2019580
2018555