scispace - formally typeset
Search or ask a question
Topic

Magnetic structure

About: Magnetic structure is a research topic. Over the lifetime, 10787 publications have been published within this topic receiving 207143 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the surface and internal magnetic structure of bamboo-like cylindrical nanowires with tailored diameter modulations have been determined exploiting the direct photoemission and transmission contrasts using photo-emission electron microscopy combined with X-ray magnetic circular dichroism, as well as complementary magnetic force microscopy and micromagnetic simulations.
Abstract: The surface and the internal magnetic structure of bamboo-like cylindrical nanowires with tailored diameter modulations have been determined exploiting the direct photoemission and transmission contrasts using photoemission electron microscopy combined with X-ray magnetic circular dichroism, as well as complementary magnetic force microscopy and micromagnetic simulations. Bamboo-like cylindrical nanowires with diameters of 130 and 140 nm, and a modulation periodicity of 400 nm were electrochemically grown into the pores of alumina templates. FeCoCu and Co nanowires were selected to offer parallel and perpendicular magnetization easy axis, respectively. For FeCoCu nanowires, a main longitudinal magnetization configuration is found consistent with the predominant shape anisotropy. In addition, a weaker modulated contrast along the wires’ axis is observed that matches the position of each diameter modulation: vortex-like structures are observed at the ends of the wires and at the surface around the modulations. In Co nanowires, a multi-segmented vortex-like structure with alternating opposite chirality is found not matching the periodicity of the diameter modulations. Such a spin configuration is interpreted considering that Co nanowires exhibit hexagonal symmetry with c axis nearly perpendicular to the nanowires defining strong uniaxial transverse magnetocrystalline anisotropy.

55 citations

Journal ArticleDOI
TL;DR: In this article, the triclinic lattice parameters of Na4FeO4 were derived from powder X-ray and neutron diffraction studies, and the lattice parameter was used to characterize Fe4+ high-spin in tetrahedral FeO4 coordination.

55 citations

Journal ArticleDOI
TL;DR: It is discovered that the SkHE is depressed by modifying the magnetic structure at the edge of a track, and thus the skyrmion can move in almost a straight line at a high speed.
Abstract: Magnetic skyrmions have potential applications in novel information devices with excellent energy efficiency. However, the skyrmion Hall effect (SkHE) could cause skyrmions moving in a nanotrack to get annihilated at the track edge. In this work, we discovered that the SkHE is depressed by modifying the magnetic structure at the edge of a track, and thus the skyrmion can move in almost a straight line at a high speed. Unlike the inner part of a track with perpendicular magnetic anisotropy, the edge layer exhibits in-plane magnetic anisotropy, and the orientation of edge moments is opposite that at the perimeter of skyrmions nearby. As a result, an enhanced repulsive force acts on the skyrmion to oppose the Magnus force that causes the SkHE. Additionally, the Dzyaloshinskii–Moriya interaction (DMI) constant of the edge layer also matters. When there is no DMI at the edge layer, the transverse displacement of the skyrmion can be depressed effectively when the width of the edge layer is sufficiently large. However, when the inner part and the edge share the same DMI constant, non-monotonically varied transverse displacement occurs because of the Neel-wall-like structure at the edge layer.

55 citations

Journal ArticleDOI
TL;DR: The present results suggest a new route to realizing exotic multiple-q orders and that itinerant hexagonal magnets, including the R3M8Sn4 family with wide chemical tunability, can be a unique material platform to explore their rich phase diagrams.
Abstract: Multiple-q spin order, i.e., a spin texture characterized by a multiple number of coexisting magnetic modulation vectors q, has recently attracted attention as a source of nontrivial magnetic topology and associated emergent phenomena. One typical example is the triple-q skyrmion lattice state stabilized by Dzyaloshinskii-Moriya interactions in noncentrosymmetric magnets, while the emergence of various multiple-q states of different origins is expected according to the latest theories. Here, we investigated the magnetic structure of the itinerant polar hexagonal magnet Y3Co8Sn4, in which several distinctive mechanisms favoring multiple-q states are allowed to become active. Small-angle neutron-scattering experiments suggest the formation of incommensurate triple-q magnetic order with an in-plane vortex-like spin texture, which can be most consistently explained in terms of the novel four-spin interaction mechanism inherent to itinerant magnets. The present results suggest a new route to realizing exotic multiple-q orders and that itinerant hexagonal magnets, including the R3M8Sn4 family with wide chemical tunability, can be a unique material platform to explore their rich phase diagrams.

55 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
94% related
Magnetic field
167.5K papers, 2.3M citations
90% related
Electron
111.1K papers, 2.1M citations
89% related
Amorphous solid
117K papers, 2.2M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202353
202296
2021187
2020224
2019247
2018229