scispace - formally typeset
Search or ask a question
Topic

Magnetite

About: Magnetite is a research topic. Over the lifetime, 10277 publications have been published within this topic receiving 278071 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2-8 μm and precision in the range of 1 sigma as discussed by the authors.
Abstract: Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2–8 μm and precision in the range of 1‰ (1 sigma). These analyses represent 11 orders of magnitude reduction in sample size compared to conventional analyses on this material and they are the first report of routinely reproducible precision in the 1 per mil range for analysis of δ18O at this scale. High precision micro-analyses of this sort will permit wide-ranging new applications in stable isotope geochemistry. The analyzed magnetites form nearly spherical grains in a calcite matrix with diopside and monticellite. Textures are characteristic of granulite facies marbles and show no evidence for retrograde recrystallization of magnetite. Magnetites are near to Fe3O4 in composition, and optically and chemically homogeneous. A combination of ion probe plus conventional BrF5 analysis shows that individual grains are homogeneous with δ18O=8.9±1‰ SMOW from the core to near the rim of 0.1–1.2 mm diameter grains. Depth profiling into crystal growth faces of magnetites shows that rims are 9‰ depleted in δ18O. These low δ18O values increase in smooth gradients across the outer 10 μm of magnetite rims in contact with calcite. These are the sharpest intracrystalline gradients measured to date in geological materials. This discovery is confirmed by bulk analysis of 150–350 μm diameter magnetites which average 1.2‰ lower in δ18O than coarse magnetites due to low δ18O rims. Conventional analysis of coexisting calcite yields °18O=18.19, suggesting that bulk Δ18O (Cc-Mt)=9.3‰ and yielding an apparent equilibration “temperature” of 525° C, over 200° C below the temperature of regional metamorphism. Consideration of experimental diffusion data and grain size distribution for magnetite and calcite suggests two contrasting cooling histories. The data for oxygen in calcite under hydrothermal conditions at high P(H2O) indicates that diffusion is faster in magnetite and modelling of the low δ18O rims on magnetite would suggest that the Adirondacks experienced slow cooling after Grenville metamorphism, followed by a brief period of rapid cooling, possibly related to uplift. Conversely, the data for calcite at low P(H2O) show slower oxygen diffusion than in magnetite. Modelling based on these data is consistent with geochronology that shows slow cooling through the blocking temperature of both minerals, suggesting that the low δ18O rims form by exchange with late, low temperature fluids similar to those that infiltrated the rock to serpentinize monticellite and which infiltrated adjacent anorthosite to form late calcite veinlets. In either case, the ion microprobe results indicate that two distinct events are recorded in the post-metamorphic exchange history of these magnetites. Recognition of these events is only possible through microanalysis and has important implications for geothermometry.

107 citations

Journal ArticleDOI
01 Jun 2016-Geology
TL;DR: In this paper, an integrated model was proposed to explain the unique El Laco iron deposit that is located in a Pliocene-Pleistocene volcano of the Chilean Andes.
Abstract: We propose an integrated model that explains the magmatic and hydrothermal features of the unique El Laco iron deposit that is located in a Pliocene–Pleistocene volcano of the Chilean Andes. (Sub)volcanic crystallization of an iron-rich melt as massive magnetite promoted the exsolution of a small volume of a hydrosaline melt and of large amounts of vapor that led to the formation of an alkali-calcic hydrothermal assemblage replacing the host andesite; this assemblage is capped and overprinted by a large zone of acid-sulfate steam-heated alteration forming as a whole a protracted shallow-level magmatic-hydrothermal system. Oxygen isotopic data for the massive magnetite (δ18O: 4.3‰–5.0‰) and the alkali-calcic altered rock (diopside δ18O: 7.2‰–8.7‰; magnetite δ18O: 4.4‰–6.7‰) suggest that these rocks are genetically related to the host andesite (δ18O: 7.4‰–9.6‰). The estimated temperature of the mineral assemblage (>∼900 °C) may be the highest recorded in hydrothermal systems, is attributed to exsolution of fluids from the crystallizing iron-rich melts, and is considered unlikely to reflect the convection of surficial fluids.

107 citations

Journal ArticleDOI
03 Apr 2013-ACS Nano
TL;DR: The combination of magnetic and structural studies by means of Fe K-edge X-ray absorption near edge structure (XANES) and high-resolution transmission electron microscopy has identified and quantified two phases of Fe involved in the biomineralization process, confirming the role of ferrihydrite as the source of Fe ions for magnetite biominalization in M. gryphiswaldense.
Abstract: Magnetotactic bacteria biosynthesize magnetite nanoparticles of high structural and chemical purity that allow them to orientate in the geomagnetic field. In this work we have followed the process of biomineralization of these magnetite nanoparticles. We have performed a time-resolved study on magnetotactic bacteria Magnetospirillum gryphiswaldense strain MSR-1. From the combination of magnetic and structural studies by means of Fe K-edge X-ray absorption near edge structure (XANES) and high-resolution transmission electron microscopy we have identified and quantified two phases of Fe (ferrihydrite and magnetite) involved in the biomineralization process, confirming the role of ferrihydrite as the source of Fe ions for magnetite biomineralization in M. gryphiswaldense. We have distinguished two steps in the biomineralization process: the first, in which Fe is accumulated in the form of ferrihydrite, and the second, in which the magnetite is rapidly biomineralized from ferrihydrite. Finally, the XANES anal...

107 citations

Journal ArticleDOI
TL;DR: In this article, textural and compositional data for magnetite from nine iron skarn deposits in Canada, Romania, and China show that most samples have been reequilibrated by dissolution and reprecipitation, oxy-exsolution, and/or recrystallization.
Abstract: Textural and compositional data for magnetite from nine iron skarn deposits in Canada, Romania, and China show that most samples have reequilibrated by dissolution and reprecipitation, oxy-exsolution, and/or recrystallization. The dissolution and reprecipitation processes are most extensive and are present in most magnetite samples examined, whereas the oxy-exsolution occurs only in high-Ti magnetite, forming exsolution lamellae of Fe-Ti-Al oxides. Electron microprobe analysis indicates that the reequilibration processes have significantly modified the minor and trace element compositions of magnetite, notably Si, Mg, Ca, Al, Mn, and Ti, whereas oxy-exsolution is effective in decreasing the Ti content of high-Ti magnetite. Many analyses of magnetite grains from the skarn deposits plot variably in the banded iron formations (BIF), iron oxide–copper-gold (IOCG), or porphyry Cu fields using the Ti + V versus Ca + Al + Mn discrimination diagram. This pattern suggests that trace element data for magnetite that has unusual composition and/or reequilibrated cannot be reliably used as a petrogenetic indicator. Mixing of externally derived saline fluids with Fe-rich magmatic-hydrothermal solutions, an increase in temperature, and local decreasing pressure and f O 2 are considered the most important causes for the dissolution and reprecipitation, or recrystallization, of the magnetite; increasing f O 2 and decreasing temperature may facilitate oxy-exsolution of Fe-Ti-Al oxides in high-Ti magnetite. Results presented here highlight the importance of detailed textural characterization prior to in situ chemical analysis of magnetite grains so that mineral compositions can be properly evaluated in terms of the genesis and evolution of iron skarn deposits.

107 citations

Journal ArticleDOI
TL;DR: In this article, a series of experiments were conducted to investigate the stability of montmorillonite in the presence of native Fe, magnetite and aqueous solutions under hydrothermal conditions, showing that the expansion of this material on ethylene glycol solvation was much reduced compared to the starting material.

107 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
83% related
Amorphous solid
117K papers, 2.2M citations
83% related
Adsorption
226.4K papers, 5.9M citations
83% related
Oxide
213.4K papers, 3.6M citations
82% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023570
20221,277
2021367
2020478
2019494
2018446