scispace - formally typeset
Search or ask a question
Topic

Magnetite

About: Magnetite is a research topic. Over the lifetime, 10277 publications have been published within this topic receiving 278071 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This preliminary study shows that the synthetic new material displays an intermediate behavior between that of magnetite and PE-2-CA spheres, and electrophoresis measurements as a function of pH and of KNO3 concentration, show great similarity between the core/shell and pure polymer nanoparticles.

173 citations

Journal ArticleDOI
03 May 2008-Langmuir
TL;DR: The bacterium Actinobacter sp.
Abstract: The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (γ-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end p...

172 citations

Journal ArticleDOI
TL;DR: In this article, the authors used electron microprobe analysis (EMPA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis, and oxygen isotope analysis to test whether magnetite from the five following geologic settings in western Montana and northern Idaho has distinct geochemical signatures: (1) greenschist facies burial metamorphic rocks of the Middle Proterozoic Belt Supergroup, (2) sediment-hosted stratiform Cu-Ag deposits (Spar Lake and Rock Creek) in Belt Super
Abstract: Magnetite (Fe 3 O 4 ) is a common and widespread accessory mineral in many host rocks and mineral deposits. We used electron microprobe analysis (EMPA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis, and oxygen isotope analysis to test whether magnetite from the five following geologic settings in western Montana and northern Idaho has distinct geochemical signatures: (1) greenschist facies burial metamorphic rocks of the Middle Proterozoic Belt Supergroup, (2) sediment-hosted stratiform Cu-Ag deposits (Spar Lake and Rock Creek) in Belt Supergroup metasedimentary rocks, (3) hydrothermal Ag-Pb-Zn veins of the Coeur d’Alene district, (4) extensively deformed and partially altered Belt Supergroup host rocks from the Coeur d’Alene district, and (5) two Cretaceous postmetamorphic igneous intrusions. EMPA results show that magnetite from each of these five settings is essentially pure Fe 3 O 4 , but LA-ICP-MS analyses results show that magnetite from these five settings has trace element concentrations that generally vary over less than one order of magnitude. These magnetite occurrences show subtle compositional differences that generally correlate with temperatures, as determined by oxygen isotope geothermometry. Burial metamorphic magnetite from the Coeur d’Alene host rocks has the smallest overall trace element contents. Chromium, Co, and Zn are depleted in both hydrothermal and host-rock magnetite from the Coeur d’Alene district. In contrast, magnetite from postmetamorphic igneous rocks in the Belt terrane has relatively large Mg, V, Co, and Mn values, consistent with its formation at relatively high temperatures and subsequent subsolidus reequilibration. Factor analysis was used to trace any underlying or latent relationships among elements that are likely to be incorporated into the magnetite structure. Factor analysis provides geochemical discrimination of at least three types of magnetite in the Belt terrane: (1) Mg-Mn, (2) Ga-Zn-Cr, and (3) Co-Ni-V magnetite. Hydrothermal magnetite from the Gold Hunter siderite vein shows characteristically high values for factor 1. Factor 2 is most pronounced in magnetite from the burial metamorphic host rocks and the sediment-hosted Cu-Ag deposits. Furthermore, factor 2 indicates that Ga, Zn, and Cr concentrations are lower on average in hydrothermal and host-rock magnetite from the Coeur d’Alene district. Factor 3 divides igneous magnetite from other magnetite occurrences. This factor also subdivides magnetite of an alkalic-ultramafic intrusive complex from that of the granitic stock. Hydrothermal magnetite from siderite and calcite veins in the Coeur d’Alene district has consistently low scores for factor 3. The geochemistry of magnetite can be a useful discriminator and pathfinder for hydrothermal deposits. The relatively low formation temperature and the metamorphic history of the Belt terrane led to low trace element concentrations and subtle differences between magnetite from different geologic settings. Nevertheless, by combining LA-ICP-MS analysis and factor analysis, compositional variations between groups of magnetite samples from different geologic settings can be recognized.

172 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic grains isolated from magnetococcoid bacterial cells were studied by means of transmission electron microscopy, electron diffraction and electron microprobe analysis, which supported the contention that the magnetic bacterial grains are single-domain crystals capable of producing a natural remanent magnetization in sediments.

172 citations

Journal ArticleDOI
TL;DR: The sequential series of diagenetic events leading to the formation of authigenic mineral phases was followed by transmission electron microscopy and energy-dispersive X-ray analysis, which influenced phosphate mineralization and inhibited metal sulfide genesis.
Abstract: Cells of Bacillus subtilis, when suspended in a 5mM metal solution, bind metals tenaciously to their cell walls. These metal-loaded cells, when mixed with a synthetic sediment and put under laboratory conditions to simulate low-temperature sediment diagenesis, nucleate the formation of a mixed assemblage of crystalline metal phosphates, metal sulfides, and polymeric, metal-complexed, organic residues. The sequential series of diagenetic events leading to the formation of authigenic mineral phases was followed by transmission electron microscopy and energy-dispersive X-ray analysis. The minerals quartz (SiO/sub 2/) and calcite (CaCO/sub 3/) were employed in the synthetic sediment. Crystalline magnetite (Fe/sub 2/O/sub 3/) and elemental sulfur were added as redox buffering agents to ensure anoxic conditions. Quartz and magnetite appeared unreactive throughout the experimental conditions. Elemental sulfur interacted with the metal-loaded cells, affected both the eventual chemistry and crystal habit of the metal phosphates, and formed a variety of crystalline metal sulfides. Calcite raised the pH of the fluid phase of the sediment, which influenced phosphate mineralization and inhibited metal sulfide genesis.

172 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
83% related
Amorphous solid
117K papers, 2.2M citations
83% related
Adsorption
226.4K papers, 5.9M citations
83% related
Oxide
213.4K papers, 3.6M citations
82% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023570
20221,277
2021367
2020478
2019494
2018446