scispace - formally typeset
Search or ask a question


About: Magnetization is a research topic. Over the lifetime, 107872 publications have been published within this topic receiving 1969783 citations. The topic is also known as: magnetic polarization & magnetic induction.

More filters
Journal ArticleDOI
John C. Slonczewski1
TL;DR: In this paper, a new mechanism was proposed for exciting the magnetic state of a ferromagnet, where a transfer of vectorial spin accompanied an electric current flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer.

5,824 citations

Journal ArticleDOI
TL;DR: In this paper, the interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films, leading to a local increase of the Gilbert damping parameter which characterizes spin dynamics.
Abstract: The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface, stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression similar to that for the Josephson voltage across a superconducting junction. \textcopyright{} 1996 The American Physical Society.

4,433 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of shape anisotropy on magnetization curves was studied for the case of ellipsoidal spheroids of revolution (e.g., ellipses of revolution).
Abstract: The Becker-Kersten treatment of domain boundary movements is widely applicable in the interpretation of magnetization curves, but it does not account satisfactorily for the higher coercivities obtained, for example, in permanent magnet alloys. It is suggested that in many ferromagnetic materials there may occur ‘particles’ (this term including atomic segregates or ‘islands’ in alloys), distinct in magnetic character from the general matrix, and below the critical size, depending on shape, for which domain boundary formation is energetically possible. For such single-domain particles, change of magnetization can take place only by rotation of the magnetization vector, I O . As the field changes continuously, the resolved magnetization, I H , may change discontinuously at critical values, H O , of the field. The character of the magnetization curves depends on the degree of magnetic anisotropy of the particle, and on the orientation of ‘easy axes’ with respect to the field. The magnetic anisotropy may arise from the shape of the particle, from magneto-crystalline effects, and from strain. A detailed quantitative treatment is given of the effect of shape anisotropy when the particles have the form of ellipsoids of revolution (§§ 2, 3, 4), and a less detailed treatment for the general ellipsoidal form (§ 5). For the first it is convenient to use the non-dimensional parameter such that h = H /(| N a - N b |) I O , N a and N b being the demagnetization coefficients along the polar and equatorial axes. The results are presented in tables and diagrams giving the variation with h of I H / I O . For the special limiting form of the oblate spheroid there is no hysteresis. For the prolate spheroid, as the orientation angle, θ , varies from 0 to 90°, the cyclic magnetization curves change from a rectangular form with | h O | = 1, to a linear non-hysteretic form, with an interesting sequence of intermediate forms. Exact expressions are obtained for the dependence of h θ on θ , and curves for random distribution are computed. All the numerical results are applicable when the anisotropy is due to longitudinal stress, when h = HI 0 /3λδ, where λ is the saturation magnetostriction coefficient, and δ the stress. The results also apply to magneto-crystalline anisotropy in the important and representative case in which there is a unique axis of easy magnetization as for hexagonal cobalt. Estimates are made of the magnitude of the effect of the various types of anisotropy. For iron the maximum coercivities, for the most favourable orientation, due to the magneto-crystalline and strain effects are about 400 and 600 respectively. These values are exceeded by those due to the shape effect in prolate spheroids if the dimensional ratio, m , is greater than 1·1; for m = 10, the corresponding value would be about 10,000 (§7). A fairly precise estimate is made of the lower limit for the equatorial diameter of a particle in the form of a prolate spheroid below which boundary formation cannot occur. As m varies from 1 (the sphere) to 10, this varies from 1·5 to 6·1 x 10 -6 for iron, and from 6·2 to 25 x 10 -6 for nickel (§ 6). A discussion is given (§ 7) of the application of these results to ( a ) non-ferromagnetic metals and alloys containing ferromagnetic ‘impurities’, ( b ) powder magnets, ( e ) high coeravity alloys of the dispersion hardening type. In connexion with ( c ) the possible bearing on the effects of cooling in a magnetic field is indicated.

4,382 citations

Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
07 Jun 2017-Nature
TL;DR: Xu et al. as mentioned in this paper used magneto-optical Kerr effect microscopy to show that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation.
Abstract: Magneto-optical Kerr effect microscopy is used to show that monolayer chromium triiodide is an Ising ferromagnet with out-of-plane spin orientation. The question of what happens to the properties of a material when it is thinned down to atomic-scale thickness has for a long time been a largely hypothetical one. In the past decade, new experimental methods have made it possible to isolate and measure a range of two-dimensional structures, enabling many theoretical predictions to be tested. But it has been a particular challenge to observe intrinsic magnetic effects, which could shed light on the longstanding fundamental question of whether intrinsic long-range magnetic order can robustly exist in two dimensions. In this issue of Nature, two groups address this challenge and report ferromagnetism in atomically thin crystals. Xiang Zhang and colleagues measured atomic layers of Cr2Ge2Te6 and observed ferromagnetic ordering with a transition temperature that, unusually, can be controlled using small magnetic fields. Xiaodong Xu and colleagues measured atomic layers of CrI3 and observed ferromagnetic ordering that, remarkably, was suppressed in double layers of CrI3, but restored in triple layers. The two studies demonstrate a platform with which to test fundamental properties of purely two-dimensional magnets. Since the discovery of graphene1, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin–valley coupling2, Ising superconductors3,4,5 that can be tuned into a quantum metal6, possible Mott insulators with tunable charge-density waves7, and topological semimetals with edge transport8,9. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered10,11,12,13,14; such a crystal would be useful in many technologies from sensing to data storage15. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin–Wagner theorem16. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals17,18,19. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect20, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics12, and van der Waals engineering to produce interface phenomena15.

3,802 citations

Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Magnetic field
167.5K papers, 2.3M citations
91% related
Amorphous solid
117K papers, 2.2M citations
91% related
Thin film
275.5K papers, 4.5M citations
90% related
111.1K papers, 2.1M citations
89% related
No. of papers in the topic in previous years