scispace - formally typeset
Search or ask a question

Showing papers on "Magnetization published in 2002"


Journal ArticleDOI
25 Jan 2002-Science
TL;DR: Calculated spin interactions and percolation theory predict transition temperatures larger than measured, consistent with the observed suppression of magnetically active Mn atoms and hole concentration.
Abstract: We report on the epitaxial growth of a group-IV ferromagnetic semiconductor, Mn(x)Ge(1-x), in which the Curie temperature is found to increase linearly with manganese (Mn) concentration from 25 to 116 kelvin. The p-type semiconducting character and hole-mediated exchange permit control of ferromagnetic order through application of a +/-0.5-volt gate voltage, a value compatible with present microelectronic technology. Total-energy calculations within density-functional theory show that the magnetically ordered phase arises from a long-range ferromagnetic interaction that dominates a short-range antiferromagnetic interaction. Calculated spin interactions and percolation theory predict transition temperatures larger than measured, consistent with the observed suppression of magnetically active Mn atoms and hole concentration.

1,511 citations


Journal ArticleDOI
TL;DR: In this paper, a magnetic-field-induced strain of about 9.5% was observed at ambient temperature in a magnetic field of less than 1 T in NiMnGa orthorhombic seven-layered martensitic phase.
Abstract: Giant magnetic-field-induced strain of about 9.5% was observed at ambient temperature in a magnetic field of less than 1 T in NiMnGa orthorhombic seven-layered martensitic phase. The strain proved to be caused by magnetic-field-controlled twin boundary motion. According to an analysis of x-ray diffraction data, the crystal structure of this phase is nearly orthorhombic, having lattice parameters a=0.619 nm, b=0.580 nm, and c=0.553 nm (in cubic parent phase coordinates) at ambient temperature. Seven-layer shuffling-type modulation along the (110)[110]p system was recorded. The results of mechanical tests and magnetic anisotropy property measurements are also reported.

1,494 citations


Journal ArticleDOI
24 Oct 2002-Nature
TL;DR: Spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3 are obtained by imaging with optical second harmonic generation and lead to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.
Abstract: Ferroelectromagnets are an interesting group of compounds that complement purely (anti-)ferroelectric or (anti-)ferromagnetic materials--they display simultaneous electric and magnetic order. With this coexistence they supplement materials in which magnetization can be induced by an electric field and electrical polarization by a magnetic field, a property which is termed the magnetoelectric effect. Aside from its fundamental importance, the mutual control of electric and magnetic properties is of significant interest for applications in magnetic storage media and 'spintronics'. The coupled electric and magnetic ordering in ferroelectromagnets is accompanied by the formation of domains and domain walls. However, such a cross-correlation between magnetic and electric domains has so far not been observed. Here we report spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3, obtained by imaging with optical second harmonic generation. The coupling originates from an interaction between magnetic and electric domain walls, which leads to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.

1,350 citations


Journal ArticleDOI
TL;DR: In this article, a review of the most relevant finite-size and surface effects in the magnetic and transport properties of magnetic fine particles and granular solids is presented, where the stability of the particle magnetization, superparamagnetic regime and the magnetic relaxation are discussed.
Abstract: Some of the most relevant finite-size and surface effects in the magnetic and transport properties of magnetic fine particles and granular solids are reviewed. The stability of the particle magnetization, superparamagnetic regime and the magnetic relaxation are discussed. New phenomena appearing due to interparticle interactions, such as the collective state and non-equilibrium dynamics, are presented. Surface anisotropy and disorder, spin-wave excitations, as well as the enhancements of the coercive field and particle magnetization are also reviewed. The competition of surface and finite-size effects to settle the magnetic behaviour is addressed. Finally, two of the most relevant phenomena in the transport properties of granular solids are summarized namely, giant magnetoresistance in granular heterogeneous alloys and Coulomb gap in insulating granular solids.

1,083 citations


Journal ArticleDOI
18 Oct 2002-Science
TL;DR: The results confirm theoretical predictions that the size and the shape of the vortex core as well as its magnetic field dependence are governed by only two material parameters, the exchange stiffness and the saturation magnetization that determines the stray field energy.
Abstract: Thin film nanoscale elements with a curling magnetic structure (vortex) are a promising candidate for future nonvolatile data storage devices. Their properties are strongly influenced by the spin structure in the vortex core. We have used spin-polarized scanning tunneling microscopy on nanoscale iron islands to probe for the first time the internal spin structure of magnetic vortex cores. Using tips coated with a layer of antiferromagnetic chromium, we obtained images of the curling in-plane magnetization around and of the out-of-plane magnetization inside the core region. The experimental data are compared with micromagnetic simulations. The results confirm theoretical predictions that the size and the shape of the vortex core as well as its magnetic field dependence are governed by only two material parameters, the exchange stiffness and the saturation magnetization that determines the stray field energy.

785 citations


Journal ArticleDOI
TL;DR: This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system.
Abstract: We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization. This result indicates the presence of a metastable state without magnetic long-range order. This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system. This work opens new perspectives for one-dimensional systems to obtain high temperature metastable magnets by combining high spin magnetic units, strong interunit interactions, and uniaxial anisotropy.

762 citations


Journal ArticleDOI
TL;DR: In this article, the magnetization dynamics in thin ferromagnetic films and small magnetized particles in contact with paramagnetic conductors have been studied and the additional Gilbert damping is significant for small ferromagnets, when the nonmagnetic layers efficiently relax the injected spins.
Abstract: We study the magnetization dynamics in thin ferromagnetic films and small ferromagnetic particles in contact with paramagnetic conductors. A moving magnetization vector causes ‘‘pumping’’ of spins into adjacent nonmagnetic layers. This spin transfer affects the magnetization dynamics similar to the Landau-LifshitzGilbert phenomenology. The additional Gilbert damping is significant for small ferromagnets, when the nonmagnetic layers efficiently relax the injected spins, but the effect is reduced when a spin accumulation build-up in the normal metal opposes the spin pumping. The damping enhancement is governed by ~and, in turn, can be used to measure! the mixing conductance or spin-torque parameter of the ferromagnet‐normal-metal interface. Our theoretical findings are confirmed by agreement with recent experiments in a variety of multilayer systems.

733 citations


Journal ArticleDOI
21 Mar 2002-Nature
TL;DR: Evidence is found that the monatomic chains consist of thermally fluctuating segments of ferromagnetically coupled atoms which, below a threshold temperature, evolve into a ferromagnetic long-range-ordered state owing to the presence of anisotropy barriers.
Abstract: Two-dimensional systems, such as ultrathin epitaxial films and superlattices, display magnetic properties distinct from bulk materials. A challenging aim of current research in magnetism is to explore structures of still lower dimensionality. As the dimensionality of a physical system is reduced, magnetic ordering tends to decrease as fluctuations become relatively more important. Spin lattice models predict that an infinite one-dimensional linear chain with short-range magnetic interactions spontaneously breaks up into segments with different orientation of the magnetization, thereby prohibiting long-range ferromagnetic order at a finite temperature. These models, however, do not take into account kinetic barriers to reaching equilibrium or interactions with the substrates that support the one-dimensional nanostructures. Here we demonstrate the existence of both short- and long-range ferromagnetic order for one-dimensional monatomic chains of Co constructed on a Pt substrate. We find evidence that the monatomic chains consist of thermally fluctuating segments of ferromagnetically coupled atoms which, below a threshold temperature, evolve into a ferromagnetic long-range-ordered state owing to the presence of anisotropy barriers. The Co chains are characterized by large localized orbital moments and correspondingly large magnetic anisotropy energies compared to two-dimensional films and bulk Co.

718 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a nonmagnet into a ferromagnet is absorbed at the interface.
Abstract: Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a nonmagnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free-electron models and first-principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission, (2) rotation of reflected and transmitted spins, and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.

670 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the magnetoelectric (ME) effect in single phase and composite materials is presented, where the authors mainly emphasize their investigations of ME particulate composites and laminate composites, and summarize the important results.
Abstract: In the past few decades, extensive research has been conducted on the magnetoelectric (ME) effect in single phase and composite materials. Dielectric polarization of a material under a magnetic field or an induced magnetization under an electric field requires the simultaneous presence of long-range ordering of magnetic moments and electric dipoles. Single phase materials suffer from the drawback that the ME effect is considerably weak even at low temperatures, limiting their applicability in practical devices. Better alternatives are ME composites that have large magnitudes of the ME voltage coefficient. The composites exploit the product property of the materials. The ME effect can be realized using composites consisting of individual piezomagnetic and piezoelectric phases or individual magnetostrictive and piezoelectric phases. In the past few years, our group has done extensive research on ME materials for magnetic field sensing applications and current measurement probes for high-power electric transmission systems. In this review article, we mainly emphasize our investigations of ME particulate composites and laminate composites and summarize the important results. The data reported in the literature are also compared for clarity. Based on these results, we establish the fact that magnetoelectric laminate composites (MLCs) made from the giant magnetostrictive material, Terfenol-D, and relaxor-based piezocrystals are far superior to the other contenders. The large ME voltage coefficient in MLCs was obtained because of the high piezoelectric voltage coefficient of the piezocrystals and large elastic compliances. In addition, an optimized thickness ratio between the piezoelectric and magnetostrictive phases and the direction of the magnetostriction also influence the magnitude of the ME coefficient.

647 citations


Journal ArticleDOI
TL;DR: Analytical expressions for the Curie temperature and the magnetization in the limit of low carrier density are derived, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement with experimental results.
Abstract: We theoretically study the development of spontaneous magnetization in diluted magnetic semiconductors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized percolation theory we derive analytic expressions for the Curie temperature and the magnetization in the limit of low carrier density, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement with experimental results.

Journal ArticleDOI
TL;DR: The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons, and it is found that this exchange interaction leads to an effective field and a spin torque.
Abstract: The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes.

Journal ArticleDOI
TL;DR: In this paper, the properties of Zn1−xMnxO (x=0.1 and 0.3) thin films grown on Al2O3(00⋅1) substrates using laser molecular-beam epitaxy were investigated.
Abstract: We report on ferromagnetic characteristics of Zn1−xMnxO (x=0.1 and 0.3) thin films grown on Al2O3(00⋅1) substrates using laser molecular-beam epitaxy. By increasing the Mn content, the films exhibited increases in both the c-axis lattice constant and fundamental band gap energy. The Curie temperature obtained from temperature-dependent magnetization curves was 45 K for the film with x=0.3, depending on the Mn composition in the films. The remanent magnetization and coercive field of Zn0.9Mn0.1O at 5 K were 0.9 emu/g and 300 Oe, respectively. For Zn0.7Mn0.3O, the remanent magnetization at 5 K increased to 3.4 emu/g.

Journal ArticleDOI
TL;DR: In this article, the effects on the electronic and magnetic properties induced by substitution of the X atom, applied pressure, and the use of the local spin density approximation (LSDA) vs the generalized gradient approximation (GGA) in density functional theory are compared.
Abstract: The structural, electronic, and magnetic properties of ${\mathrm{Co}}_{2}\mathrm{Mn}X$ $(X=\mathrm{Si},$ Ge, Sn) Heusler compounds have been determined by means of all-electron full-potential linearized augmented plane wave (FLAPW) calculations. We focus on the effects on the electronic and magnetic properties induced by: (i) substitution of the X atom, (ii) applied pressure, and (iii) the use of the local spin density approximation (LSDA) vs the generalized gradient approximation (GGA) in density functional theory. A comparison between LSDA and GGA for the exchange-correlation functional shows that GGA is essential for an accurate description of the equilibrium volumes and of the electronic and magnetic properties of these systems. We find that both the energy gap and the spin gap increase as the X atomic number decreases. As a result of the semiconducting (metallic) character found in the minority (majority) spin band structure, the Si and Ge based alloys are predicted to be half-metallic. In contrast, ${\mathrm{Co}}_{2}\mathrm{MnSn}$ is found to be a ``nearly half-metallic'' compound, since the minority valence band maximum crosses the Fermi level. The calculated total magnetization of $5{\ensuremath{\mu}}_{B}$ is in excellent agreement with recent experiments. By including a fully self-consistent treatment of spin-orbit coupling, the GGA calculated orbital moments are shown to be very small (about $0.008{\ensuremath{\mu}}_{B}$ for Mn and about $0.02{\ensuremath{\mu}}_{B}$ for Co), showing that the quenching of the orbital magnetic moment is nearly complete. The calculated hyperfine fields, both at zero and elevated pressure, are compared with available experimental data, and show general agreement, except for Mn. Finally, the calculated Mn $2p$ exchange splittings, found to be in good agreement with experiment, are proportional to the Mn magnetic moments, suggesting a localized nature of ferromagnetism in these Heusler compounds.

Journal ArticleDOI
01 Jan 2002-Carbon
TL;DR: In this paper, the adsorption features of activated carbon and the magnetic properties of iron oxides were combined in a composite to produce magnetic adsorbents, which can be used as adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by simple magnetic procedure.

Journal ArticleDOI
TL;DR: Recording the temporal evolution of the precessing spins by a time-delayed probe-pulse provides a quantitative method to study locally the magnetic anisotropy, as well as switching and damping phenomena in micromagnetic structures.
Abstract: A novel, all-optical method to excite and detect spin waves in magnetic materials is presented. By exploiting the temperature dependence of the magnetic anisotropy, an ultrashort laser pulse is efficiently converted in a picosecond "anisotropy field" pulse that triggers a coherent precession of the magnetization. Recording the temporal evolution of the precessing spins by a time-delayed probe-pulse provides a quantitative method to study locally the magnetic anisotropy, as well as switching and damping phenomena in micromagnetic structures. Applications to nickel and permalloy ( Ni80Fe20) films are discussed, particularly showing the possibility to explore standing spin waves in thin films.

Journal ArticleDOI
TL;DR: In this paper, a magnetic tunnel junction device using perpendicular magnetization films designed for magnetic random access memory (MRAM) was presented, where stable and uniform magnetization states were observed in 0.3 μm×0.3
Abstract: We present here a magnetic tunnel junction device using perpendicular magnetization films designed for magnetic random access memory (MRAM). In order to achieve high-density MRAM, magnetic tunnel junction devices with a small area of low aspect ratio (length/width) is required. However, all MRAMs reported so far consist of in-plane magnetization films, which require an aspect ratio of 2 or more in order to reduce magnetization curling at the edge. Meanwhile, a perpendicular magnetic tunnel junction (pMTJ) can achieve an aspect ratio=1 because the low saturation magnetization does not cause magnetization curling. Magnetic-force microscope shows that stable and uniform magnetization states were observed in 0.3 μm×0.3 μm perpendicular magnetization film fabricated by focused-ion beam. In contrast, in-plane magnetization films clearly show the presence of magnetization vortices at 0.5 μm×0.5 μm, which show the impossibility of information storage. The PMTJ shows a magnetoresistive (MR) ratio larger than 50% w...

Journal ArticleDOI
01 Aug 2002-Nature
TL;DR: It is demonstrated, by probing all three magnetization components, that reliable precessional reversal in lithographically structured micrometre-sized elliptical permalloy elements is possible at switching times of about 200 ps, which is ten times faster than the natural damping time constant.
Abstract: Since the invention of the first magnetic memory disk in 1954, much effort has been put into enhancing the speed, bit density and reliability of magnetic memory devices. In the case of magnetic random access memory (MRAM) devices, fast coherent magnetization rotation by precession of the entire memory cell is desired1,2,3,4,5,6, because reversal by domain-wall motion is much too slow. In principle, the fundamental limit of the switching speed via precession is given by half of the precession period. However, under-critically damped systems exhibit severe ringing7,8 and simulations show that, as a consequence, undesired back-switching of magnetic elements of an MRAM can easily be initiated by subsequent write pulses, threatening data integrity. We present a method to reverse the magnetization in under-critically damped systems by coherent rotation of the magnetization while avoiding any ringing. This is achieved by applying specifically shaped magnetic field pulses that match the intrinsic properties of the magnetic elements. We demonstrate, by probing all three magnetization components9,10, that reliable precessional reversal in lithographically structured micrometre-sized elliptical permalloy elements is possible at switching times of about 200 ps, which is ten times faster than the natural damping time constant.

Journal ArticleDOI
TL;DR: In this paper, a model consisting of a ferromagnetic layer coupled to a diluted, antiferromagnetic layers extensive Monte Carlo simulations are performed and it is shown that a variety of typical effects associated with exchange bias, such as positive bias, temperature, and time dependencies as well as the dependence on the thickness of the antiferramagnetic layer can be explained within their model.
Abstract: For a model system consisting of a ferromagnetic layer coupled to a diluted, antiferromagnetic layer extensive Monte Carlo simulations are performed. Exchange bias is observed as a result of a domain state in the antiferromagnetic layer which develops during field cooling, carrying an irreversible domain state's magnetization. In agreement with recent experimental observations on Co/CoO bilayers a strong dependence of the exchange bias field on dilution of the antiferromagnet is found and it is shown that a variety of typical effects associated with exchange bias, such as positive bias, temperature, and time dependencies as well as the dependence on the thickness of the antiferromagnetic layer can be explained within our model.

Journal ArticleDOI
TL;DR: In this paper, it was shown that hydrogenation of nanographite is able to induce finite magnetization and demonstrated the spontaneous magnetism of a graphene ribbon in which each carbon is bonded to two hydrogen atoms at one edge and to a single hydrogen atom at another edge.
Abstract: Hydrogenated nanographite can display spontaneous magnetism Recently we proposed that hydrogenation of nanographite is able to induce finite magnetization We have performed theoretical investigation of a graphene ribbon in which each carbon is bonded to two hydrogen atoms at one edge and to a single hydrogen atom at another edge Application of the local-spin-density approximation to the calculation of the electronic band-structure of the ribbon shows appearance of a spin-polarized flat band at the Fermi energy Producing different numbers of mono-hydrogenated carbons and di-hydrogenated carbons can create magnetic moments in nanographite

Journal ArticleDOI
TL;DR: Wurtzite (Ga,Mn)N films showing ferromagnetic behaviour at room temperature were successfully grown on sapphire(0, 0, 0 1) substrates by molecular beam epitaxy using ammonia as a nitrogen source as mentioned in this paper.

Journal ArticleDOI
TL;DR: AC magnetic susceptibility measurements show the molecule to exhibit slow magnetic relaxation indicative of a single-molecule magnet with an energy barrier of 10 cm(-1) for spin reversal.
Abstract: We report the synthesis of the first well-documented example of a cyano-bridged single-molecule magnet. An assembly reaction parallel to that employed in producing the trigonal prismatic [(Me3tacn)6MnCr6(CN)18]2+ (Me3tacn = N,N‘,N‘‘-trimethyl-1,4,7-triazacyclononane) cluster affords K[(Me3tacn)6MnMo6(CN)18](ClO4)3 (1), containing an analogous molybdenum(III)-substituted cluster. Fits to the DC magnetic susceptibility and magnetization data for 1 show that the MnMo6 cluster possesses weak antiferromagnetic coupling (J = −6.7 cm-1), leading to an S = 13/2 ground state with significantly enhanced magnetic anisotropy (D = −0.33 cm-1 and E = −0.018 cm-1). Consistent with these results, AC magnetic susceptibility measurements show the molecule to exhibit slow magnetic relaxation indicative of a single-molecule magnet with an energy barrier of 10 cm-1 for spin reversal.

Journal ArticleDOI
TL;DR: In this article, the magnetization of various well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite, and natural graphite was investigated to investigate the recently reported ferromagneticlike signal and its possible relation to magnetically impurities.
Abstract: We have studied the magnetization of various well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite, and natural graphite to investigate the recently reported ferromagneticlike signal and its possible relation to ferromagnetic impurities. The magnetization results obtained for HOPG samples for applied fields parallel to the graphene layers---to minimize the diamagnetic background---show no correlation with the magnetic impurity concentration. Our overall results suggest an intrinsic origin for the ferromagnetism found in graphite. We discuss possible origins of the ferromagnetic signal.

Journal ArticleDOI
TL;DR: In this paper, a GaMnN thin film was synthesized using gas-source molecular-beam epitaxy and magnetic characterization performed using a squid magnetometer showed evidence of ferromagnetic ordering at room temperature for all samples.
Abstract: GaMnN thin films were synthesized using gas-source molecular-beam epitaxy. Mn concentrations between 3 and 12 at. % were investigated. No evidence of second-phase formation was observed by powder x-ray diffraction or high-resolution cross section transmission electron microscopy in films with 9% or less Mn. The films were n type as determined by capacitance–voltage or Hall analysis. Magnetic characterization performed using a squid magnetometer showed evidence of ferromagnetic ordering at room temperature for all samples. In agreement with theoretical predictions, material with 3% Mn showed the highest degree of ordering per Mn atom. At 320 K, the samples show a nonzero magnetization indicating a TC above room temperature.

Journal ArticleDOI
25 Oct 2002-Science
TL;DR: The ferromagnetic domains almost disappear at a temperature T P2 higher than T P1, showing a local magnetic hysteresis in agreement with the resistivity hysteResis, indicating magnetic inhomogeneity.
Abstract: Upon cooling, the isolated ferromagnetic domains in thin films of La0.33Pr0.34Ca0.33MnO3start to grow and merge at the metal-insulator transition temperatureTP1, leading to a steep drop in resistivity, and continue to grow far below TP1. In contrast, upon warming, the ferromagnetic domain size remains unchanged until near the transition temperature. The jump in the resistivity results from the decrease in the average magnetization. The ferromagnetic domains almost disappear at a temperature TP2higher than TP1, showing a local magnetic hysteresis in agreement with the resistivity hysteresis. Even well above TP2, some ferromagnetic domains with higher transition temperatures are observed, indicating magnetic inhomogeneity. These results may shed more light on the origin of the magnetoresistance in these materials.

Journal ArticleDOI
TL;DR: The reported process can be applied to various substrates, nanoparticles, and functional macromolecules and will be useful for future magnetic nanodevice fabrication.
Abstract: We present a simple polymer-mediated process of assembling magnetic FePt nanoparticles on a solid substrate. Alternatively absorbing the PEI molecule and FePt nanoparticles on a HO-terminated solid surface leads to a smooth FePt nanoparticle assembly with controlled assembly thickness and dimension. Magnetic measurements show that the thermally annealed FePt nanoparticle assembly as thin as three nanoparticle layers is ferromagnetic. The magnetization direction of this thin FePt nanoparticle assembly is readily controlled with the laser-assisted magnetic writing. The reported process can be applied to various substrates, nanoparticles, and functional macromolecules and will be useful for future magnetic nanodevice fabrication.

Journal ArticleDOI
TL;DR: In this paper, the synthesis of room-temperature ferromagnetic semiconductors, Zn1−xFexO, was reported, and the essential ingredient in achieving room temperature ferromagnetism in bulk Zn0.94Fe0.05Cu0.01O was found to be additional Cu doping.
Abstract: Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1−xFexO, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1−xFexO was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94Fe0.05Cu0.01O; the saturation magnetization at room temperature reached a value of 0.75μB per Fe. A large magnetoresistance was also observed below 100 K.

Journal ArticleDOI
TL;DR: In this paper, the effects of dispersed phase saturation magnetization and applied magnetic fields on the rheological properties of magnetorheological (MR) fluids are described, and the results show that the decrease in yield stress for finer particle based MR fluids is due to the relatively smaller magnetization of the finer particles.
Abstract: The effects of dispersed phase saturation magnetization and applied magnetic fields on the rheological properties of magnetorheological (MR) fluids are described. MR fluids based on two different grades of carbonyl iron powder with different average particle size, 7–9 μm (grade A) and 2 μm (grade B), were prepared. Vibrating sample magnetometer measurements showed that the saturation magnetization values were 2.03 and 1.89 T for grades A and B, respectively. Rheological measurements were conducted for 33 and 40 vol% grade A and grade B based MR fluids with a specially built double Couette strain rate controlled rheometer at flux densities ranging from 0.2 to ~0.8 T. The yield stresses of 33 and 40 vol% grade A were 100 ± 3 and 124 ± 3 kPa, respectively at 0.8 ± 0.1 T. The yield stress values of MR fluids based on finer particles (grade B) were consistently smaller. For example, the yield stresses for 33 and 40 vol% grade B based MR fluid were 80 ± 8 and 102 ± 2 kPa, respectively at 0.8 ± 0.1 T. The yield stresses at the flux density approaching magnetic saturation in particles (B ~ 0.8T) were found to increase quadratically with the saturation magnetization (μ0Ms) of the dispersed magnetic phase. This is in good agreement with the analytical models of uniformly saturated particle chains developed by Ginder and co-workers. The results presented here show that the decrease in yield stress for finer particle based MR fluids is due to the relatively smaller magnetization of the finer particles.

Journal ArticleDOI
TL;DR: In this paper, it was shown that magnetic magnetization at the lateral edges of a thin, axially magnetized magnetic element with finite inplane size can be described by effective ''pinning'' boundary conditions.
Abstract: We show that dynamic magnetization at the lateral edges of a thin, axially magnetized magnetic element with finite in-plane size can be described by effective ``pinning'' boundary conditions. This effective pinning is of a purely dipolar nature, is not related to the magnetocrystalline surface anisotropy of the magnetic material, and is determined by the inhomogeneity of the dynamic demagnetizing field near the edges of the element. Eigenfunctions and eigenvalues obtained using these effective boundary conditions give quantitative description of the quantized spin wave spectra experimentally observed in long and thin permalloy stripes of a micron-size width.

Journal ArticleDOI
TL;DR: In this article, the magnetization processes of highly ordered FePt(001) films with large perpendicular magnetic anisotropy have been studied and a drastic change in the coercivity by one order of magnitude has been found at the critical thickness (tN=45 nm) where the film morphology changes from a particulate to a continuous state.
Abstract: The magnetization processes of highly ordered FePt(001) films with large perpendicular magnetic anisotropy have been studied. The film morphology was controlled from isolated particles to continuous film by varying the nominal thickness (tN) of the FePt film sputter deposited directly on a MgO(001) substrate at an elevated temperature. A drastic change in the coercivity by one order of magnitude has been found at the critical thickness (tN=45 nm) where the film morphology changes from a particulate to a continuous state. A huge coercivity exceeding 40 kOe has been achieved in the film with tN=10 nm, which comprises single domain particles with an average lateral size of approximately 50 nm.