scispace - formally typeset
Search or ask a question
Topic

Magnetofection

About: Magnetofection is a research topic. Over the lifetime, 258 publications have been published within this topic receiving 15774 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices because its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysOSomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Abstract: Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

6,213 citations

Journal ArticleDOI
TL;DR: In this paper, the authors associated gene vectors with superparamagnetic nanoparticles and targeted gene delivery by application of a magnetic field, which potentiated the efficacy of any vector up to several hundred-fold, allowed reduction of the duration of gene delivery to minutes, extended the host tropism of adenoviral vectors to nonpermissive cells and compensated for low retroviral titer.
Abstract: Low efficiencies of nonviral gene vectors, the receptor-dependent host tropism of adenoviral or low titers of retroviral vectors limit their utility in gene therapy. To overcome these deficiencies, we associated gene vectors with superparamagnetic nanoparticles and targeted gene delivery by application of a magnetic field. This potentiated the efficacy of any vector up to several hundred-fold, allowed reduction of the duration of gene delivery to minutes, extended the host tropism of adenoviral vectors to nonpermissive cells and compensated for low retroviral titer. More importantly, the high transduction efficiency observed in vitro was reproduced in vivo with magnetic field-guided local transfection in the gastrointestinal tract and in blood vessels. Magnetofection provides a novel tool for high throughput gene screening in vitro and can help to overcome fundamental limitations to gene therapy in vivo.

919 citations

Journal ArticleDOI
Dan Luo1, Saltzman Wm1
TL;DR: It is predicted that manipulations aimed at optimizing DNA complexation or membrane fusion have a fundamental physical limit; new methods designed to increase transfection efficiency must increase DNA concentration at the target cell surface without adding to the toxicity.
Abstract: Efficient DNA transfection is critical for biological research and new clinical therapies, but the mechanisms responsible for DNA uptake are unknown. Current nonviral transfection methods, empirically designed to maximize DNA complexation and/or membrane fusion, are amenable to enhancement by a variety of chemicals. These chemicals include particulates, lipids, and polymer complexes that optimize DNA complexation/condensation, membrane fusion, endosomal release, or nuclear targeting, which are the presumed barriers to gene delivery. Most chemical enhancements produce a moderate increase in gene delivery and a limited increase in gene expression. As a result, the efficiency of transfection and level of gene expression after nonviral DNA delivery remain low, suggesting the existence of additional unidentified barriers. Here, we tested the hypothesis that DNA transfection efficiency is limited by a simple physical barrier: low DNA concentration at the cell surface. We used dense silica nanoparticles to concentrate DNA-vector (i.e. DNA-transfection reagent) complexes at the surface of cell monolayers; manipulations that increased complex concentration at the cell surface enhanced transfection efficiency by up to 8.5-fold over the best commercially available transfection reagents. We predict that manipulations aimed at optimizing DNA complexation or membrane fusion have a fundamental physical limit; new methods designed to increase transfection efficiency must increase DNA concentration at the target cell surface without adding to the toxicity.

547 citations

Journal ArticleDOI
Jon Dobson1
TL;DR: The advantages and difficulties associated with magnetic nanoparticle-based transfection will be discussed as will the underlying physical principles, recent studies and potential future applications.
Abstract: The recent emphasis on the development of non-viral transfection agents for gene delivery has led to new physics and chemistry-based techniques, which take advantage of charge interactions and energetic processes. One of these techniques which shows much promise for both in vitro and in vivo transfection involves the use of biocompatible magnetic nanoparticles for gene delivery. In these systems, therapeutic or reporter genes are attached to magnetic nanoparticles, which are then focused to the target site/cells via high-field/high-gradient magnets. The technique promotes rapid transfection and, as more recent work indicates, excellent overall transfection levels as well. The advantages and difficulties associated with magnetic nanoparticle-based transfection will be discussed as will the underlying physical principles, recent studies and potential future applications.

538 citations

Journal ArticleDOI
Abstract: In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

383 citations

Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
69% related
Cancer cell
93.4K papers, 3.5M citations
68% related
Apoptosis
115.4K papers, 4.8M citations
67% related
Cell growth
104.2K papers, 3.7M citations
67% related
Cytotoxic T cell
92.4K papers, 4.7M citations
66% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202110
202011
201916
20189
201716
201621