scispace - formally typeset
Search or ask a question
Topic

Magnetorheological fluid

About: Magnetorheological fluid is a research topic. Over the lifetime, 8538 publications have been published within this topic receiving 131502 citations. The topic is also known as: MRF & MR fluid.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a control strategy for a flexible laboratory structure excited by simulated wind forces for the purpose of minimizing along-wind accelerations is developed for application to a flexible structure.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the structural control results of shaking table tests for a steel frame structure in order to evaluate the performance of a number of proposed semi-active control algorithms using multiple magnetorheological (MR) dampers.
Abstract: This paper presents the structural control results of shaking table tests for a steel frame structure in order to evaluate the performance of a number of proposed semi-active control algorithms using multiple magnetorheological (MR) dampers. The test structure is a six-story steel frame equipped with MR dampers. Four different cases of damper arrangement in the structure are selected for the control study. In experimental tests, the El Centro earthquake and Kobe earthquake ground motion data are used as excitations. Further, several decentralized sliding mode control algorithms are developed in this paper specifically for applications of MR dampers in building structures. Various control algorithms are used for the semi-active control studies, including the proposed decentralized sliding mode control (DSMC), LQR control, and passive-on and passive-off control. Each control algorithm is formulated specifically for the use of MR dampers installed in building structures. Additionally, each algorithm uses measurements of the device velocity and device drift for the determination of the control action to ensure that the algorithm can be implemented in a physical structure. The performance of each algorithm is evaluated based on the results of shaking table tests, and the advantages of each algorithm are compared and discussed. The reduction of story drifts and floor accelerations throughout the structure is examined.

40 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetorheological (MR) damper with a multistage piston and independent input currents was designed and analyzed, and the equivalent magnetic circuit model was investigated along with the relatio...
Abstract: A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relatio...

40 citations

Proceedings ArticleDOI
01 Jan 2004
TL;DR: A simple mathematical model of MR damper with a small number of model parameters, which can express its hysteresis behavior of nonlinear dynamic friction mechanism of the MR fluid and the model-based inverse control approach in vibration isolation of three story structure is presented.
Abstract: Magnetorheological (MR) damper is a promising semi-active device for vibration control of structures. This paper presents a simple mathematical model of MR damper with a small number of model parameters, which can express its hysteresis behavior of nonlinear dynamic friction mechanism of the MR fluid. The adaptive identification algorithm is also proposed in which the uncertain model parameters and internal state variable can be estimated in an online manner. The proposed model has an advantage that by using its inverse model we can analytically determine the necessary input voltage to the MR damper so that the desirable damper force can be added to the structure in an adaptive manner. Experimental results validate the proposed adaptive modeling method and the model-based inverse control approach in vibration isolation of three story structure.

40 citations

Journal ArticleDOI
TL;DR: In this paper, an actuator design, analysis and experimental results are presented in a time domain model of the actuator is developed and validated using experimental data, and the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves.
Abstract: Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data.

40 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Control theory
299.6K papers, 3.1M citations
78% related
Ultimate tensile strength
129.2K papers, 2.1M citations
78% related
Nonlinear system
208.1K papers, 4M citations
77% related
Fracture mechanics
58.3K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023283
2022678
2021419
2020512
2019652