scispace - formally typeset
Search or ask a question
Topic

Magnetorheological fluid

About: Magnetorheological fluid is a research topic. Over the lifetime, 8538 publications have been published within this topic receiving 131502 citations. The topic is also known as: MRF & MR fluid.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a combined experimental and theoretical study of the macroscopic response of a particular MRE consisting of a rubber matrix phase with spherical carbonyl iron particles is presented.
Abstract: Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. Due to their coupled magnetoelastic response, MREs are finding an increasing number of engineering applications. In this work, we present a combined experimental and theoretical study of the macroscopic response of a particular MRE consisting of a rubber matrix phase with spherical carbonyl iron particles. The MRE specimens used in this work are cured in the presence of strong magnetic fields leading to the formation of particle chain structures and thus to an overall transversely isotropic composite. The MRE samples are tested experimentally under uniaxial stresses as well as under simple shear in the absence or in the presence of magnetic fields and for different initial orientations of their particle chains with respect to the mechanical and magnetic loading direction. Using the theoretical framework for finitely strained MREs introduced by Kankanala and Triantafyllidis (2004) , we propose a transversely isotropic energy density function that is able to reproduce the experimentally measured magnetization, magnetostriction and simple shear curves under different prestresses, initial particle chain orientations and magnetic fields. Microscopic mechanisms are also proposed to explain (i) the counterintuitive effect of dilation under zero or compressive applied mechanical loads for the magnetostriction experiments and (ii) the importance of a finite strain constitutive formulation even at small magnetostrictive strains. The model gives an excellent agreement with experiments for relatively moderate magnetic fields but has also been satisfactorily extended to include magnetic fields near saturation.

339 citations

Journal ArticleDOI
TL;DR: It is demonstrated that shear thickening can be masked by a yield stress and can be recovered when the yield stress is decreased below a threshold, which opens up possibilities for the design of smart suspensions that combine shear Thickening with electro- or magnetorheological response.
Abstract: Suspensions are of wide interest and form the basis for many smart fluids. For most suspensions, the viscosity decreases with increasing shear rate, that is, they shear thin. Few are reported to do the opposite, that is, shear thicken, despite the longstanding expectation that shear thickening is a generic type of suspension behaviour. Here we resolve this apparent contradiction. We demonstrate that shear thickening can be masked by a yield stress and can be recovered when the yield stress is decreased below a threshold. We show the generality of this argument and quantify the threshold in rheology experiments where we control yield stresses arising from a variety of sources, such as attractions from particle surface interactions, induced dipoles from applied electric and magnetic fields, as well as confinement of hard particles at high packing fractions. These findings open up possibilities for the design of smart suspensions that combine shear thickening with electro- or magnetorheological response.

337 citations

Journal ArticleDOI
TL;DR: In this article, the interparticle forces and resulting shear stresses in a magnetorheological fluid are calculated from a finite element analysis in which the nonlinearity and saturation of the particle magnetization are incorporated.
Abstract: The interparticle forces and resulting shear stresses in a magnetorheological fluid are calculated. The field due to a linear chain of particles in a fixed average magnetic induction Bave is determined from a finite element analysis in which the nonlinearity and saturation of the particle magnetization are incorporated. The shear stresses are then computed from the field using Maxwell’s stress tensor. The stresses obtained for all but the lowest magnetic inductions are controlled by the saturation of the magnetization in the contact regions of each particle. Identifying the maximum shear stress as a function of shear strain with the yield stress gives values in agreement with results reported for typical fluids. For high magnetic inductions the yield stress plateaus due to the complete saturation of the particle magnetization; the stress scales as the square of the saturation magnetization in this regime.

317 citations

Journal ArticleDOI
TL;DR: In this paper, a semi-active H∞ control of vehicle suspension with magneto-rheological (MR) damper is studied, where a polynomial model is adopted to characterize the dynamic response of the MR damper.

315 citations

Journal ArticleDOI
TL;DR: In this article, two different continuum formulations for magnetorheological elastomers (MREs) are presented: an Eulerian (current configuration) based approach using the second law of thermodynamics plus the conservation laws method of mechanics and a new, Lagrangian based formulation based on the unconstrained minimization of a potential energy functional.
Abstract: Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. Due to their strong magnetoelastic coupling response MREs are finding an increasing number of engineering applications, thus necessitating appropriate theoretical descriptions which is the objective of this work. Two different continuum formulations for MREs are presented: an Eulerian (current configuration) based approach using the second law of thermodynamics plus the conservation laws method of mechanics and a new, Lagrangian (reference configuration) based formulation based on the unconstrained minimization of a potential energy functional. It is shown that both approaches yield the same governing equations and boundary conditions. Following a discussion of general properties of the free energy function of MREs, we use a particular such function to illustrate the magnetoelastic coupling phenomena in a cylinder subjected to traction or torsion under the presence of external magnetic fields.

313 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Control theory
299.6K papers, 3.1M citations
78% related
Ultimate tensile strength
129.2K papers, 2.1M citations
78% related
Nonlinear system
208.1K papers, 4M citations
77% related
Fracture mechanics
58.3K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023283
2022678
2021419
2020512
2019652