scispace - formally typeset
Search or ask a question
Topic

Magnetorheological fluid

About: Magnetorheological fluid is a research topic. Over the lifetime, 8538 publications have been published within this topic receiving 131502 citations. The topic is also known as: MRF & MR fluid.


Papers
More filters
Journal Article
TL;DR: In this article, the thermal conductivity of an iron-based magnetorheological suspension is investigated for varying particle volume fractions and magnetic-field strengths, and two models are proposed and tested to determine the effective conductivity in the limiting case when the suspension internal structure is saturated by the imposed magnetic field.
Abstract: The thermal conductivity of an iron-based magnetorheological suspension is experimentally investigated for varying particle volume fractions and magnetic-field strengths. Under a magnetic field, the thermal-conductivity component in the field direction increases significantly (by 100% in one case), while the two components perpendicular to the field direction remain virtually unchanged. We propose and test two models for the thermal conductivity in the limiting case when the suspension’s internal structure is saturated by the imposed magnetic field. A two-level homogenization model that first uses the Bruggeman method to calculate the effective conductivity of particle chains, and then an effective-medium theory model to determine the overall conductivity of the suspension, is found to fit accurately the components of the thermal-conductivity tensor. Utilizing this modeling procedure, we determine the effective conductivity of the field-induced, iron-particle chains to be 0.966 W/mK at saturation. This co...

71 citations

Patent
26 Nov 2003
TL;DR: The magnetorheological fluids used in the braking system for prosthetic knee joints were described in this paper, which consisted of polarizable iron particles, a carrier fluid, and optionally an additive.
Abstract: The present invention relates in one embodiment to magnetorheological fluids utilized in prosthetic joints in general and, in particular, to magnetorheological fluids utilized in controllable braking systems for prosthetic knee joints. Preferred magnetorheological fluids of the present invention comprises polarizable iron particles, a carrier fluid, and optionally an additive. Preferred additives include, but are not limited to functionalized carrier fluids as well as derivatized fluoropolymers. Preferred carrier fluids include, but are not limited, to perfluorinated polyethers.

71 citations

Patent
12 Apr 2000
TL;DR: In this article, a haptic feedback device including a fluid viscosity-controlled brake that outputs high forces to the device user at low cost while maintaining inherent safety is presented, where a sensor senses a position of the manipulandum and outputs a sensor signal.
Abstract: A haptic feedback device including a fluid viscosity-controlled brake that outputs high forces to the device user at low cost while maintaining inherent safety. An interface device includes a manipulandum physically contacted by the user. A sensor senses a position of the manipulandum and outputs a sensor signal. The interface device also includes a brake including a field-controlled fluid having a viscosity that can be controlled by controlling an electric current in a coil, where a resistive force or drag on the manipulandum is controlled by controlling the fluid's viscosity. The fluid can be an electrorheological fluid controlled by an electric field or a magnetorheological fluid controlled by a magnetic field. In one preferred embodiment, the resistive force is controlled by adjusting a degree of contact of the brake with the manipulandum based on the fluid's viscosity. Disclosed embodiments include fishing devices, bicycle simulators, and control knobs.

71 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of thick magnetorheological elastomers is experimentally investigated and it is observed that the field-induced change in the modulus is independent of the thickness of the elastomer and is only dependent on the iron particle concentration and the magnetic field strength.
Abstract: In this study, the behavior of thick magnetorheological elastomers is experimentally investigated. Two types of magnetorheological elastomer specimens of varying concentrations, with circular and rectangular shapes having thicknesses from 6.35 mm to a maximum of 25.4 mm, are prepared. The magnetorheological elastomer samples are studied under quasi-static compression and double lap-shear tests. The shear and the Young’s moduli of the magnetorheological elastomers are obtained under different applied magnetic fields. It is observed that the field-induced change in the modulus is independent of the thickness of the magnetorheological elastomer and is only dependent on the iron particle concentration and the magnetic field strength. With the increase in the applied magnetic field, it is observed that the change in modulus varies from a linear behavior at lower applied magnetic fields to a nonlinear one at higher magnetic fields. It is found that compressive and shear moduli only depend on the applied magneti...

71 citations

Journal ArticleDOI
TL;DR: In this paper, the semi-active suspension system for railway vehicles based on the controlled fluid dampers is investigated, and compared with the passive on and passive off suspension systems, while the car body accelerations of the railway vehicle integrated with four MR dampers in the secondary suspension systems are simulated under the random and periodical track irregularities using the established governing equations of a railway vehicle and the modelled track irregularities.
Abstract: In this paper, the semi-active suspension system for railway vehicles based on the controlled (MR) fluid dampers is investigated, and compared with the passive on and passive off suspension systems. The lateral, yaw, and roll accelerations of the car body, trucks, and wheelsets of a full-scale railway vehicle integrated with four MR dampers in the secondary suspension systems, which are in the closed and open loops respectively, are simulated under the random and periodical track irregularities using the established governing equations of the railway vehicle and the modelled track irregularities in Part I of this paper. The simulation results indicate that (1) the semi-active controlled MR damper-based suspension system for railway vehicles is effective and beneficial as compared with the passive on and passive off modes, and (2) while the car body accelerations of the railway vehicle integrated with semi-active controlled MR dampers can be significantly reduced relative to the passive on and passive off ...

71 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Control theory
299.6K papers, 3.1M citations
78% related
Ultimate tensile strength
129.2K papers, 2.1M citations
78% related
Nonlinear system
208.1K papers, 4M citations
77% related
Fracture mechanics
58.3K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023283
2022678
2021419
2020512
2019652