scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work encapsulates magnetic cobalt-platinum nanoparticles inside microtubules using the authors' developed Tau-derived peptide that binds to their internal pockets and provides a new concept for designing magnetotactic materials.
Abstract: Construction of magnetotactic materials is a significant challenge in nanotechnology applications such as nanodevices and nanotransportation. Artificial magnetotactic materials can be designed from magnetotactic bacteria because these bacteria use magnetic nanoparticles for aligning with and moving within magnetic fields. Microtubules are attractive scaffolds to construct magnetotactic materials because of their intrinsic motility. Nonetheless, it is challenging to magnetically control their orientation while retaining their motility by conjugating magnetic nanoparticles on their outer surface. Here we solve the issue by encapsulating magnetic cobalt-platinum nanoparticles inside microtubules using our developed Tau-derived peptide that binds to their internal pockets. The in situ growth of cobalt-platinum nanoparticles resulted in the formation of a linear-chain assembly of nanoparticles inside the microtubules. The magnetic microtubules significantly aligned with a high order parameter (0.71) along the weak magnetic field (0.37 T) and showed increased motility. This work provides a new concept for designing magnetotactic materials.

17 citations

Journal ArticleDOI
TL;DR: This work hypothesizes that a mutualism between metazoan species sensitive to Earth’s magnetic field provides a magnetotactic capacity to these species, and provides support for this hypothesis using existing literature, demonstrating that by placing the MTB as the ‘magnetic-sensor', previously contradictory results are now in agreement.
Abstract: The ability to sense Earth’s magnetic field has evolved in various taxa. However, despite great efforts to find the ‘magnetic-sensor’ in vertebrates, the results of these scientific efforts remain inconclusive. A few decades ago, it was found that bacteria, known as magnetotactic bacteria (MTB), can move along a magnetic field using nanometric chain-like structures. Still, it is not fully clear why these bacteria evolved to have this capacity. Thus, while for MTB the ‘magnetic-sensor’ is known but the adaptive value is still under debate, for metazoa it is the other way around. In the absence of convincing evidence for any ‘magnetic-sensor’ in metazoan species sensitive to Earth’s magnetic field, we hypothesize that a mutualism between these species and MTB provides one. In this relationship the host benefits from a magnetotactic capacity, while the bacteria benefit a hosting environment and dispersal. We provide support for this hypothesis using existing literature, demonstrating that by placing the MTB as the ‘magnetic-sensor’, previously contradictory results are now in agreement. We also propose plausible mechanisms and ways to test the hypothesis. If proven correct, this hypothesis would shed light on the forces driving both animal and bacteria magnetotactic abilities.

17 citations

Journal ArticleDOI
TL;DR: In this article, selective leaching experiments were conducted on a sample of ferromanganese crust, which had been obtained from the Federated States of Micronesia at a water depth of 2262m.
Abstract: Hydrogenetic ferromanganese crusts (hereafter referred to as “crusts”) on Pacific seamounts are formed by the precipitation of iron–manganese oxides from seawater on volcanic and biogenic substrate rocks. As crusts grow continuously and have very slow growth rates of between 1 and 10 mm/m.y., they can potentially be used as records of the Neogene paleoceanographic and paleoclimatic conditions. Crusts can be considered as compressed sediment cores containing biogenic, volcanogenic, and terrestrial particles that include eolian dusts and the partly weathered products of substrate acquired during its growth. In this study, selective leaching experiments were conducted on a sample of ferromanganese crust, which had been obtained from the Federated States of Micronesia at a water depth of 2262 m. Chemical leaching experiments were conducted using oxalic acid buffered with ammonium oxalate on the crushed crust samples, which is an optimization of previously proposed sequential leaching procedures. The applied method was found to be effective in separating the major mineral phases of crusts from associated metallic components, thereby providing concentration of the residual fraction for use in analysis following the leaching experiment. Using this method, polygenetic particles were extracted from the crust and identified using optical and electron microscopes. They were found to be of various origins and included volcanogenic, biogenic, terrestrial, and extraterrestrial material. In addition, well-sorted prism-shaped chained magnetic particles were observed in residual fractions. Rock magnetic experiments support the idea that the magnetic particles are magnetites and originated from fossil magnetotactic bacteria. The fossil magnetotactic bacteria might have been living on the crust at the time of crust formation. Alternatively, fossil magnetotactic bacteria could have been transported by deep sea currents from the sediment where magnetotactic bacteria originated.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the characterization of a magnetotactic spirillum and the implications these results have for its use in the clean up of environmental pollution, and propose a new mechanism for the biomineralization of magnetite.
Abstract: Magnetotactic bacteria possess a magnetic moment due the presence of membrane bounded crystals of magnetite, (Fe3O4) called magnetosomes within their structure. Through manipulation in an applied magnetic field it is possible to determine the size, speed, and magnetic moment of individual bacteria, and hence an average for a culture. Variations in these characteristics with growth have been measured, indicating the suitability of this particular magnetic spirillum for metal loading. A correlation between the increase in magnetic moment and iron uptake of this bacterium leads us to propose a new mechanism for the biomineralization of magnetite. This paper describes the characterization of a magnetotactic spirillum and the implications these results have for its use in the clean up of environmental pollution.

17 citations

Journal ArticleDOI
TL;DR: The goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1, and it seems likely that it is important in magnetosomes biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.
Abstract: Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.

17 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873