scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of ferrihydrite in magnetosome synthesis in magnetotactic bacteria was discussed based on the results of laser Raman spectroscopic measurements.
Abstract: Magnetotactic bacteria have one or more chains of magnetosome, consisting of nano-sized magnetic crystal covered with a phospholipid bilayer and use it to sense the geomagnetic fields. In order to elucidate the molecular process to make magnetosome from the iron compounds found in the bacteria, laser Raman spectroscopic measurements were performed with the magnetotactic bacterium, Magnetospirillum magnetotacticum MS-1 and the fractions separated from it. The major Raman signals at 662 cm � 1 and 740 cm � 1 were observed. The former was assigned to the Raman signal of magnetite and the latter, to that of ferrihydrite. The Raman signal of ferrihydrite was observed not only in the membrane fraction, but also in the cytoplasmic fraction. Based on the results, the role of ferrihydrite in magnetosome synthesis in the magnetotactic bacteria was discussed. [doi:10.2320/matertrans.MER2007333]

12 citations

Journal ArticleDOI
TL;DR: Detailed protocols for growing three of the most widely studied strains of magnetotactic bacteria, all belonging to the genus Magnetospirillum are presented, allowing for precise control of the O2 concentration made available to the bacteria, in order to ensure that they grow normally and synthesize magnetosomes.
Abstract: Magnetotactic bacteria are Gram-negative, motile, mainly aquatic prokaryotes ubiquitous in freshwater and marine habitats. They are characterized by their ability to biomineralize magnetosomes, which are magnetic nanometer-sized crystals of magnetite (Fe3O4) or greigite (Fe3S4) surrounded by a lipid bilayer membrane, within their cytoplasm. For most known magnetotactic bacteria, magnetosomes are assembled in chains inside the cytoplasm, thereby conferring a permanent magnetic dipole moment to the cells and causing them to align passively with external magnetic fields. Because of these specific features, magnetotactic bacteria have a great potential for commercial and medical applications. However, most species are microaerophilic and have specific O2 concentration requirements, making them more difficult to grow routinely than many other bacteria such as Escherichia coli. Here we present detailed protocols for growing three of the most widely studied strains of magnetotactic bacteria, all belonging to the genus Magnetospirillum. These methods allow for precise control of the O2 concentration made available to the bacteria, in order to ensure that they grow normally and synthesize magnetosomes. Growing magnetotactic bacteria for further studies using these procedures does not require the experimentalist to be an expert in microbiology. The general methods presented in this article may also be used to isolate and culture other magnetotactic bacteria, although it is likely that growth media chemical composition will need to be modified.

12 citations

Journal ArticleDOI
TL;DR: Information on magnetosome biosynthesis and strategies for enhancement of bacterial cell growth and magnetOSome formation are reviewed, and implications for improvement of magnetosomes yield on a laboratory scale and mass-production (commercial or industrial) scale are reviewed.
Abstract: Magnetotactic bacteria have the unique ability to synthesize magnetosomes (nano-sized magnetite or greigite crystals arranged in chain-like structures) in a variety of shapes and sizes. The chain alignment of magnetosomes enables magnetotactic bacteria to sense and orient themselves along geomagnetic fields. There is steadily increasing demand for magnetosomes in the areas of biotechnology, biomedicine, and environmental protection. Practical difficulties in cultivating magnetotactic bacteria and achieving consistent, high-yield magnetosome production under artificial environmental conditions have presented an obstacle to successful development of magnetosome applications in commercial areas. Here, we review information on magnetosome biosynthesis and strategies for enhancement of bacterial cell growth and magnetosome formation, and implications for improvement of magnetosome yield on a laboratory scale and mass-production (commercial or industrial) scale.

12 citations

Journal ArticleDOI
TL;DR: The magnetic properties of magnetotactic bacteria have been determined by a variety of techniques, including pulsed hysteresis measurements on single cells as mentioned in this paper, which can be used to identify the magnetic properties.
Abstract: Magnetotactic bacteria orient and migrate along magnetic field lines. Each cell is essentially a self-propelled magnetic dipole. The magnetic properties of these bacteria have been determined by a variety of techniques, including pulsed hysteresis measurements on single cells.

12 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873