scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The crystal structure of the MtxA C-terminal domain is presented and new insights into its sequence-structure relationship are provided to better understand the role and function of M txA in MTBés magnetotaxis.
Abstract: Magnetotactic bacteria (MTB) are a diverse group of aquatic bacteria that have the magnetotaxis ability to align themselves along the geomagnetic field lines and to navigate to a microoxic zone at the bottom of chemically stratified natural water. This special navigation is the result of a unique linear assembly of a specialized organelle, the magnetosome, which contains a biomineralized magnetic nanocrystal enveloped by a cytoplasmic membrane. The Magnetospirillum gryphiswaldense MtxA protein (MGR_0208) was suggested to play a role in bacterial magnetotaxis due to its gene location in an operon together with putative signal transduction genes. Since no homology is found for MtxA, and to better understand the role and function of MtxA in MTB’s magnetotaxis, we initiated structural and functional studies of MtxA via X-ray crystallography and deletion mutagenesis. Here, we present the crystal structure of the MtxA C-terminal domain and provide new insights into its sequence-structure relationship.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the impact of rare earth (RE) elements on the magnetic properties of magnetosomes by using different complementary techniques, such as X-ray diffraction, transmission electron microscopy, and near edge spectroscopy analyses.
Abstract: Magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 biosynthesise chains of cube–octahedral magnetosomes, which are 40 nm magnetite high quality (Fe3O4) nanoparticles. The magnetic properties of these crystalline magnetite nanoparticles, which can be modified by the addition of other elements into the magnetosome structure (doping), are of prime interest in a plethora of applications, those related to cancer therapy being some of the most promising ones. Although previous studies have focused on transition metal elements, rare earth (RE) elements are very interesting as doping agents, both from a fundamental point of view (e.g. significant differences in ionic sizes) and for the potential applications, especially in biomedicine (e.g. magnetic resonance imaging and luminescence). In this work, we have investigated the impact of Gd and Tb on the magnetic properties of magnetosomes by using different complementary techniques. X-ray diffraction, transmission electron microscopy, and X-ray absorption near edge spectroscopy analyses have revealed that a small amount of RE ions, ∼3–4%, incorporate into the Fe3O4 structure as Gd3+ and Tb3+ ions. The experimental magnetic characterisation has shown a clear Verwey transition for the RE-doped bacteria, located at T ∼ 100 K, which is slightly below the one corresponding to the undoped ones (106 K). However, we report a decrease in the coercivity and remanence of the RE-doped bacteria. Simulations based on the Stoner–Wohlfarth model have allowed us to associate these changes in the magnetic response with a reduction of the magnetocrystalline (KC) and, especially, the uniaxial (Kuni) anisotropies below the Verwey transition. In this way, Kuni reaches a value of 23 and 26 kJ m−3 for the Gd- and Tb-doped bacteria, respectively, whilst a value of 37 kJ m−3 is obtained for the undoped bacteria.

3 citations

Journal ArticleDOI
Chinnaraji Annamalai1
TL;DR: In this paper , the magnetic properties and magnetotaxis efficiency of rod-shaped greigite-producing magnetotactic bacteria (MTB) cells were investigated. But the authors did not consider the effect of the number of particles in the cells.
Abstract: Greigite magnetosomes produced by magnetotactic bacteria (MTB) are widely distributed in natural environments, but large uncertainties remain regarding their magnetic biosignatures. Here, we have constructed micromagnetic models with realistic biogenic greigite particles to quantify the magnetic properties and magnetotaxis efficiency of greigite-producing MTB cells. Our calculations suggest coercivity (Bc) of ∼15–21 mT for intact greigite-producing rod-shaped MTB and many-celled magnetotactic prokaryotes, with Bc decreasing to ∼11 mT for greigite magnetofossils with clumped particles. These magnetic signatures make biogenic greigite distinguishable from typical biogenic magnetite and inorganic greigite, providing reliable magnetic criteria to detect biogenic greigite in a wide range of environmental and geological settings. Our numerical calculations suggest that rod-shaped greigite-producing MTB have a similar magnetotaxis efficiency to magnetite MTB, likely by biomineralizing more greigite crystals to compensate for the lower saturation magnetization of greigite and less ordered chains in greigite MTB cells, demonstrating biological-controlled optimization of their magnetic nanostructure.

3 citations

01 Jan 2004
TL;DR: Biological aspects and engineering aspects about the magnetotactic bacteria, with an interesting nanostructure, with the potential field of applications was described.
Abstract: This paper presents biological aspects and engineering aspects about the magnetotactic bacteria, with an interesting nanostructure. The potential field of applications was described.

3 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873