scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review discusses the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and considers the value of genetically 'magnetizing' non-magnetotacticacteria.
Abstract: Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.

371 citations

Journal ArticleDOI
TL;DR: Several low molecular mass proteins tightly bound to bacterial magnetite were obtained from Magnetospirillum magneticumstrain AMB-1 and showed common features in their amino acid sequences, which may be directly involved in biological magnetite crystal formation in magnetic bacteria.

347 citations

Journal ArticleDOI
TL;DR: The ultrastructure of a magnetotactic bacterium (strain MS-1) was examined by transmission, scanning, and scanning-transmission electron microscopy, and the term "magnetosome" is proposed for the electron-dense particles with their enveloping layer(s) as found in this and other magnetosome bacteria.
Abstract: The ultrastructure of a magnetotactic bacterium (strain MS-1) was examined by transmission, scanning, and scanning-transmission electron microscopy. The organism resembled other spirilla in general cell morphology, although some differences were detected at the ultrastructural level. Electron-dense particles within magnetotactic cells were shown by energy-dispersive X-ray analysis to be localizations containing iron. A non-magnetotactic variant of strain MS-1 lacked these novel bacterial inclusion bodies. A chain of these particles traversed each magnetotactic cell in a specific arrangement that was consistent from cell to cell, seemingly associated with the inner surface of the cytoplasmic membrane. Each particle was surrounded by an electron-dense layer separated from the particle surface by an electron-transparent region. The term "magnetosome" is proposed for the electron-dense particles with their enveloping layer(s) as found in this and other magnetotactic bacteria.

337 citations

Journal ArticleDOI
TL;DR: The purpose of this review is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Abstract: SUMMARY Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.

328 citations

Journal ArticleDOI
TL;DR: The role of bacteria in the formation of biogenic iron oxides has been extensively studied in the last few decades as discussed by the authors, however, it is still not clear proof that they can form only as a result of biological activity.

325 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873