scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple apparatus for measuring the magnetism of magnetotactic bacteria was developed with a common laboratory spectrophotometer, and a novel magnetism parameter, R(mag), exhibited a better linearity than C(mag) with respect to the percentage of magnetosome-containing bacteria.

52 citations

Journal ArticleDOI
TL;DR: A new type of nanoparticles synthesized by magnetotactic bacteria, called magnetosomes, is introduced, with improved properties compared with commonly used chemically synthesized nanoparticles, for the treatment of infiltrating tumors, such as glioma, for which whole tumor coverage by nanoparticles can hardly be achieved.

51 citations

Journal ArticleDOI
TL;DR: A comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group.
Abstract: Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral–octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum.

50 citations

Journal ArticleDOI
TL;DR: Two-dimensional synchrotron X-ray diffraction is applied to cells of magnetotactic bacteria that are pre-aligned with a magnetic field to determine the crystallographic orientation of magnetosomes relative to the chain axis to reveal pronounced fiber textures that can be explained by a strain-specific biological control on crystal orientation at the chain level or by physical alignment effects due to intra-chain magnetic interactions.
Abstract: One-dimensional magnetic nanostructures have magnetic properties superior to non-organized materials due to strong uniaxial shape anisotropy. Magnetosome chains in magnetotactic bacteria represent a biological paradigm of such magnet, where magnetite crystals synthesized in organelles called magnetosomes are arranged into linear chains. Two-dimensional synchrotron X-ray diffraction (XRD) is applied to cells of magnetotactic bacteria that are pre-aligned with a magnetic field to determine the crystallographic orientation of magnetosomes relative to the chain axis. The obtained pole figure patterns reveal a [111] fiber texture along the chain direction for magnetospirilla strains MSR-1 and AMB-1, whereas a [100] fiber texture is measured for Desulfovibrio magneticus strain RS-1. The [100] axis appears energetically unfavorable because it represents a magnetic hard axis in magnetite, but can be turned into an effective easy axis by particle elongation along [100] for aspect ratios higher than 1.25, consistent with aspect ratios in RS-1 magnetosomes determined earlier. The pronounced fiber textures can be explained either by a strain-specific biological control on crystal orientation at the chain level or by physical alignment effects due to intra-chain magnetic interactions. In this case, biological control of the axis of elongation would be sufficient to influence the crystallographic texture of the magnetosome chain.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the Magnetospirillum magneticum strain was found to form membrane-enveloped magnetite crystals (magnetosomes) under strict genetic control.
Abstract: It is widely believed that magnetotactic bacteria (MTB) form membrane-enveloped magnetite crystals (magnetosomes) under strict genetic control. In this study, the Magnetospirillum magneticum strain...

50 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873