scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results underpin that GLCs enables a new platform to observe biomineralization events in living biological species at unprecedented spatial resolution and will enable a paradigm shift in understanding the evolution of biological species.
Abstract: Understanding the biomineralization pathways in living biological species is a grand challenge owing to the difficulties in monitoring the mineralization process at sub-nanometer scales. Here, we monitored the nucleation and growth of magnetosome nanoparticles in bacteria and in real time using a transmission electron microscope (TEM). To enable biomineralization within the bacteria, we subcultured magnetotactic bacteria grown in iron-depleted medium and then mixed them with iron-rich medium within graphene liquid cells (GLCs) right before imaging the bacteria under the microscope. Using in situ electron energy loss spectroscopy (EELS), the oxidation state of iron in the biomineralized magnetosome was analysed to be magnetite with trace amount of hematite. The increase of mass density of biomineralized magnetosomes as a function of incubation time indicated that the bacteria maintained their functionality during the in situ TEM imaging. Our results underpin that GLCs enables a new platform to observe biomineralization events in living biological species at unprecedented spatial resolution. Understanding the biomineralization processes in living organisms facilitates the design of biomimetic materials, and will enable a paradigm shift in understanding the evolution of biological species.

26 citations

Journal ArticleDOI
TL;DR: The successful isolation of RS-1 by this method suggests the presence of magnetic bacteria which exist in a non-magnetic state in sediments, and allows isolation of non-motile and non- or weakly-magnetotactic bacteria, which would not accumulate in the absence of an applied magnetic field.

26 citations

Journal ArticleDOI
TL;DR: Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation, which indicates that iron from the magnetosome may be recycled to the environment in a more soluble form.
Abstract: Summary Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named ‘Candidatus Magnetoglobus multicellularis’), which is formed by an orderly assemblage of 17–40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.

26 citations

Journal ArticleDOI
TL;DR: Comparisons of the genome sequence of UR-1 revealed a potential ability for a chemolithoautotrophic lifestyle, with the oxidation of a reduced sulfur compound and carbon assimilation by rTCA and a nearly complete magnetosome genome island, containing a set of mam and mms genes, was identified.
Abstract: Magnetotactic bacteria are widely represented microorganisms that have the ability to synthesize magnetosomes. The magnetotactic cocci of the order Magnetococcales are the most frequently identified, but their classification remains unclear due to the low number of cultivated representatives. This paper reports the analysis of an uncultivated magnetotactic coccus UR-1 collected from the Uda River (in eastern Siberia). Genome analyses of this bacterium and comparison to the available Magnetococcales genomes identified a novel species called "Ca. Magnetaquicoccus inordinatus," and a delineated candidate family "Ca. Magnetaquicoccaceae" within the order Magnetococcales is proposed. We used average amino acid identity values <55-56% and <64-65% as thresholds for the separation of families and genera, respectively, within the order Magnetococcales. Analyses of the genome sequence of UR-1 revealed a potential ability for a chemolithoautotrophic lifestyle, with the oxidation of a reduced sulfur compound and carbon assimilation by rTCA. A nearly complete magnetosome genome island, containing a set of mam and mms genes, was also identified. Further comparative analyses of the magnetosome genes showed vertical inheritance as well as horizontal gene transfer as the evolutionary drivers of magnetosome biomineralization genes in strains of the order Magnetococcales.

26 citations

Journal ArticleDOI
TL;DR: In vivo MR imaging in a mouse breast cancer model shows effective intratumoral distribution of both nanoparticles in the tumor tissue, but magnetosome demonstrated higher distribution than HSA-coated iron oxide nanoparticles according to fluorescence microscopy evaluation.
Abstract: Magnetosomes are specialized organelles arranged in intracellular chains in magnetotactic bacteria. The superparamagnetic property of these magnetite crystals provides potential applications as contrast-enhancing agents for magnetic resonance imaging. In this study, we compared two different nanoparticles that are bacterial magnetosome and HSA-coated iron oxide nanoparticles for targeting breast cancer. Both magnetosomes and HSA-coated iron oxide nanoparticles were chemically conjugated to fluorescent-labeled anti-EGFR antibodies. Antibody-conjugated nanoparticles were able to bind the MDA-MB-231 cell line, as assessed by flow cytometry. To compare the cytotoxic effect of nanoparticles, MTT assay was used, and according to the results, HSA-coated iron oxide nanoparticles were less cytotoxic to breast cancer cells than magnetosomes. Magnetosomes were bound with higher rate to breast cancer cells than HSA-coated iron oxide nanoparticles. While 250 μg/ml of magnetosomes was bound 92 ± 0.2%, 250 μg/ml of HSA-coated iron oxide nanoparticles was bound with a rate of 65 ± 5%. In vivo efficiencies of these nanoparticles on breast cancer generated in nude mice were assessed by MRI imaging. Anti-EGFR-modified nanoparticles provide higher resolution images than unmodified nanoparticles. Also, magnetosome with anti-EGFR produced darker image of the tumor tissue in T2-weighted MRI than HSA-coated iron oxide nanoparticles with anti-EGFR. In vivo MR imaging in a mouse breast cancer model shows effective intratumoral distribution of both nanoparticles in the tumor tissue. However, magnetosome demonstrated higher distribution than HSA-coated iron oxide nanoparticles according to fluorescence microscopy evaluation. According to the results of in vitro and in vivo study results, magnetosomes are promising for targeting and therapy applications of the breast cancer cells.

26 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873