scispace - formally typeset
Search or ask a question
Topic

Magnetotactic bacteria

About: Magnetotactic bacteria is a research topic. Over the lifetime, 1118 publications have been published within this topic receiving 43741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the evolution of the hysteresis loops as a function of temperature determining the different magnetic anisotropy contributions and their evolution with temperature was analyzed in the framework of the Stoner-Wohlfarth model.
Abstract: Magnetotactic bacteria synthesize a chain of magnetic nanoparticles, called magnetosome chain, used to align and swim along the geomagnetic field lines. In particular, Magnetospirillum gryphiswaldense biomineralize magnetite, Fe3O4. Growing this species in a Co-supplemented medium, Co-doped magnetite is obtained, tailoring in this way the magnetic properties of the magnetosome chain. Combining structural and magnetic techniques such as transmission electron microscopy, energy-dispersive x-ray spectroscopy, X-ray absorption near edge structure, and X-ray magnetic circular dichroism, we determine that ∼1% of Co2+ substitutes Fe2+ located in octahedral places in the magnetite, thus increasing the coercive field. In the framework of the Stoner–Wohlfarth model, we have analyzed the evolution of the hysteresis loops as a function of temperature determining the different magnetic anisotropy contributions and their evolution with temperature. In contrast with the control magnetosome chains, whose effective anisot...

24 citations

Journal ArticleDOI
TL;DR: Stable suspensions of nanocrystals are achieved that show remanence and coercivity at the size limit of superparamagnetism, and which are able to align their magnetic moments forming strings in solution as is demonstrated by cryo-electron tomography.
Abstract: Biological systems show impressive control over the shape, size and organization of mineral structures, which often leads to advanced physical properties that are tuned to the function of these materials. Such control is also found in magnetotactic bacteria, which produce-in aqueous medium and at room temperature-magnetite nanoparticles with precisely controlled morphologies and sizes that are generally only accessible in synthetic systems with the use of organic solvents and/or the use of high-temperature methods. The synthesis of magnetite under biomimetic conditions, that is, in water and at room temperature and using polymeric additives as control agents, is of interest as a green production method for magnetic nanoparticles. Inspired by the process of magnetite biomineralization, a rational approach is taken by the use of a solid precursor for the synthesis of magnetite nanoparticles. The conversion of a ferrous hydroxide precursor, which we demonstrate with cryo-TEM and low-dose electron diffraction, is used to achieve control over the solution supersaturation such that crystal growth can be regulated through the interaction with poly-(α,β)-dl-aspartic acid, a soluble, negatively charged polymer. In this way, stable suspensions of nanocrystals are achieved that show remanence and coercivity at the size limit of superparamagnetism, and which are able to align their magnetic moments forming strings in solution as is demonstrated by cryo-electron tomography.

24 citations

Journal ArticleDOI
TL;DR: A large number of studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly, but the biological and environmental function of these particles remains a matter of debate.
Abstract: Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal–microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe3O4 or Fe3S4, Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.

24 citations

Journal ArticleDOI
TL;DR: There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars.
Abstract: Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.

24 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis based on their 16S rRNA gene sequences revealed that they are two novel species and cluster with the previously reported MTB affiliated with the phylum Nitrospirae, thus extending the distribution of Nitro Spirae MTB from freshwater to the marine environment.
Abstract: Magnetotactic bacteria (MTB) are a group of Gram-negative bacteria characterized by synthesizing magnetosomes and swimming along geomagnetic field lines. Phylogenetically, they belong to different taxonomic lineages including Proteobacteria, Nitrospirae, Omnitrophica, Latescibacteria and Planctomycetes phyla on the phylogenetic tree. To date, six Nitrospirae MTB phylotypes have been identified from freshwater or low-salinity environments and described in the literature. Here, we report the identification of two Nitrospirae MTB phylotypes collected, for the first time, from the marine environment. Both have a spherical morphology with a cell size of similar to 5 mu M and similar motility but are different colours (black-brown and ivory-white) under the optic microscope. They synthesized bullet-shaped iron-oxide magnetosomes that were arranged in multiple bundles of chains. Moreover, the cytoplasm of the black-brown Nitrospirae MTB contained sulphur inclusions that conferred on cells a rough, granular appearance. Phylogenetic analysis based on their 16S rRNA gene sequences revealed that they are two novel species and cluster with the previously reported MTB affiliated with the phylum Nitrospirae, thus extending the distribution of Nitrospirae MTB from freshwater to the marine environment.

24 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
70% related
Escherichia coli
59K papers, 2M citations
69% related
Nanoparticle
85.9K papers, 2.6M citations
67% related
Virulence
35.9K papers, 1.3M citations
67% related
Particle size
69.8K papers, 1.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202137
202061
201950
201873