scispace - formally typeset



About: Manganese is a(n) research topic. Over the lifetime, 40648 publication(s) have been published within this topic receiving 622252 citation(s). The topic is also known as: Mn & element 25.
More filters

Book ChapterDOI
Iain Thornton1, John S. Webb1Institutions (1)
01 Jan 1980-
Abstract: Fifteen or more elements present in rocks and soils normally in very small amounts are essential for plant and/or animal nutrition. By the nature of their low abundance in natural uncontaminated earth materials or plants, they are known as trace elements, minor elements or micro-nutrients. Boron, copper, iron, manganese, molybdenum, silicon, vanadium and zinc are required by plants; copper, cobalt, iodine, iron, manganese, molybdenum, selenium and zinc by animals. In addition essential roles of arsenic, fluorine, nickel, silicon, tin and vanadium have in recent years been established in animal nutrition.

3,062 citations

Journal ArticleDOI
Abstract: Pore water profiles of total-CO 2 , pH, PO 3− 4 , NO − 3 plus NO − 2 , SO 2− 4 , S 2− , Fe 2+ and Mn 2+ have been obtained in cores from pelagic sediments of the eastern equatorial Atlantic under waters of moderate to high productivity. These profiles reveal that oxidants are consumed in order of decreasing energy production per mole of organic carbon oxidized ( O 2 > manganese oxides ~ nitrate > iron oxides > sulfate). Total CO 2 concentrations reflect organic regeneration and calcite dissolution. Phosphate profiles are consistent with organic regeneration and with the effects of release and uptake during inorganic reactions. Nitrate profiles reflect organic regeneration and nitrate reduction, while dissolved iron and manganese profiles suggest reduction of the solid oxide phases, upward fluxes of dissolved metals and subsequent entrapment in the sediment column. Sulfate values are constant and sulfide is absent, reflecting the absence of strongly anoxic conditions.

2,865 citations

Journal ArticleDOI
TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Abstract: A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

2,114 citations

Journal ArticleDOI
Michael M. Thackeray1Institutions (1)

1,255 citations

Journal ArticleDOI
Xiaoqing Huang1, Zipeng Zhao1, Liang Cao2, Yu Chen1  +11 moreInstitutions (5)
12 Jun 2015-Science
Abstract: Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M‐Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo‐Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73‐fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.

1,217 citations

Network Information
Related Topics (5)

129.8K papers, 2.7M citations

88% related
Aqueous solution

189.5K papers, 3.4M citations

85% related

213.4K papers, 3.6M citations

83% related

226.4K papers, 5.9M citations

83% related

107.5K papers, 2M citations

82% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Steven L. Suib

79 papers, 4.3K citations

Hiroshi Nishino

77 papers, 1K citations

Mohammad Mahdi Najafpour

50 papers, 1.8K citations

Kazu Kurosawa

48 papers, 617 citations

Scott W. Donne

28 papers, 731 citations