scispace - formally typeset
Search or ask a question
Topic

Manganite

About: Manganite is a research topic. Over the lifetime, 3430 publications have been published within this topic receiving 60353 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that both electrical conduction and ferromagnetic coupling in these compounds arise from a double exchange process, and a quantitative relation was developed between electrical conductivity and the Ferromagnetic Curie temperature.
Abstract: Recently, Jonker and Van Santen have found an empirical correlation between electrical conduction and ferromagnetism in certain compounds of manganese with perovskite structure. This observed correlation is herein interpreted in terms of those principles governing the interaction of the $d$-shells of the transition metals which were enunciated in the first paper of this series. Both electrical conduction and ferromagnetic coupling in these compounds are found to arise from a double exchange process, and a quantitative relation is developed between electrical conductivity and the ferromagnetic Curie temperature.

5,097 citations

Journal ArticleDOI
TL;DR: In this paper, a large variety of experiments reviewed in detail here contain results compatible with the theoretical predictions, including phase diagrams of manganite models, the stabilization of the charge/orbital/spin ordered half-doped correlated electronics (CE)-states, the importance of the naively small Heisenberg coupling among localized spins, the setup of accurate mean-field approximations, and the existence of a new temperature scale T∗ where clusters start forming above the Curie temperature, the presence of stripes in the system, and many others.

2,927 citations

Journal ArticleDOI
TL;DR: The manganese oxides of general formula RE1−xMxMnO3 (RE = rare earth, M = Ca, Sr, Ba, Pb) have remarkable interrelated structural, magnetic and transport properties induced by the mixed valence (3+−4+) of the Mn ions.
Abstract: The manganese oxides of general formula RE1−xMxMnO3 (RE = rare earth, M = Ca, Sr, Ba, Pb) have remarkable interrelated structural, magnetic and transport properties induced by the mixed valence (3+–4+) of the Mn ions. In particular, they exhibit very large negative magnetoresistance, called colossal magnetoresistance (CMR), in the vicinity of metal–insulator transition for certain compositions. In this review paper, we summarize the most important features of the physics of the CMR manganites. The growth techniques for manganese oxide thin films, which are the basic material for potential applications, are reviewed and their structure and morphology examined in relation to growth parameters. The effects of epitaxial strains on the physical properties are discussed. Early works on superlattices and devices are presented.

775 citations

Journal ArticleDOI
TL;DR: In this article, the first experimental evidence of room temperature direct spin polarized injection in sexithienyl (T 6 ), a prototypical organic semiconductor, from colossal magnetoresistance manganite La 0.7 Sr 0.3 MnO 3 (LSMO), was reported.

629 citations

Journal ArticleDOI
06 Nov 1997-Nature
TL;DR: In this paper, the authors describe a novel class of magnetoresistive compounds, the silver chalcogenides, and show that slightly altering the stoichiometry can lead to a marked increase in the magnetic response.
Abstract: Several materials have been identified over the past few years as promising candidates for the development of new generations of magnetoresistive devices. These range from artificially engineered magnetic multilayers' and granular alloys, in which the magnetic-field response of interfacial spins modulates electron transport to give rise to 'giant' magnetoresistance, to the manganite peravskites, in which metal-insulator transitions driven by a magnetic field give rise to a `colossal' magnetoresistive response (albeit at very high fields). Here we describe a hitherto unexplored class of magnetoresistive compounds, the silver chalcogenides. At high temperatures, the compounds Ag_2S, Ag_2Se and Ag_2Te are superionic conductors; below similar to 400 K, ion migration is effectively frozen and the compounds are non-magnetic semiconductors that exhibit no appreciable magnetoresistance. We show that slightly altering the stoichiometry can lead to a marked increase in the magnetic response. At room temperature and in a magnetic field of similar to 55 kOe, Ag_(2+δ)Se and Ag_(2+δ)Te show resistance increases of up to 200%, which are comparable with the colossal-magnetoresistance materials. Moreover, the resistance of our most responsive samples exhibits an unusual linear dependence on magnetic field, indicating both a potentially useful response down to fields of practical importance and a peculiarly long length scale associated with the underlying mechanism.

572 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
93% related
Amorphous solid
117K papers, 2.2M citations
91% related
Thin film
275.5K papers, 4.5M citations
90% related
Graphene
144.5K papers, 4.9M citations
87% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022214
2021106
2020131
2019145
2018112