scispace - formally typeset
Search or ask a question
Topic

Map matching

About: Map matching is a research topic. Over the lifetime, 2390 publications have been published within this topic receiving 36105 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map and it is shown that the accuracy is comparable with satellite navigation but with higher integrity.
Abstract: A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.

1,787 citations

Proceedings ArticleDOI
04 Nov 2009
TL;DR: It is shown that VTrack can tolerate significant noise and outages in these location estimates, and still successfully identify delay-prone segments, and provide accurate enough delays for delay-aware routing algorithms.
Abstract: Traffic delays and congestion are a major source of inefficiency, wasted fuel, and commuter frustration. Measuring and localizing these delays, and routing users around them, is an important step towards reducing the time people spend stuck in traffic. As others have noted, the proliferation of commodity smartphones that can provide location estimates using a variety of sensors---GPS, WiFi, and/or cellular triangulation---opens up the attractive possibility of using position samples from drivers' phones to monitor traffic delays at a fine spatiotemporal granularity. This paper presents VTrack, a system for travel time estimation using this sensor data that addresses two key challenges: energy consumption and sensor unreliability. While GPS provides highly accurate location estimates, it has several limitations: some phones don't have GPS at all, the GPS sensor doesn't work in "urban canyons" (tall buildings and tunnels) or when the phone is inside a pocket, and the GPS on many phones is power-hungry and drains the battery quickly. In these cases, VTrack can use alternative, less energy-hungry but noisier sensors like WiFi to estimate both a user's trajectory and travel time along the route. VTrack uses a hidden Markov model (HMM)-based map matching scheme and travel time estimation method that interpolates sparse data to identify the most probable road segments driven by the user and to attribute travel times to those segments. We present experimental results from real drive data and WiFi access point sightings gathered from a deployment on several cars. We show that VTrack can tolerate significant noise and outages in these location estimates, and still successfully identify delay-prone segments, and provide accurate enough delays for delay-aware routing algorithms. We also study the best sampling strategies for WiFi and GPS sensors for different energy cost regimes.

898 citations

Proceedings ArticleDOI
Paul E. Newson1, John Krumm1
04 Nov 2009
TL;DR: A novel, principled map matching algorithm that uses a Hidden Markov Model (HMM) to find the most likely road route represented by a time-stamped sequence of latitude/longitude pairs, which elegantly accounts for measurement noise and the layout of the road network.
Abstract: The problem of matching measured latitude/longitude points to roads is becoming increasingly important This paper describes a novel, principled map matching algorithm that uses a Hidden Markov Model (HMM) to find the most likely road route represented by a time-stamped sequence of latitude/longitude pairs The HMM elegantly accounts for measurement noise and the layout of the road network We test our algorithm on ground truth data collected from a GPS receiver in a vehicle Our test shows how the algorithm breaks down as the sampling rate of the GPS is reduced We also test the effect of increasing amounts of additional measurement noise in order to assess how well our algorithm could deal with the inaccuracies of other location measurement systems, such as those based on WiFi and cell tower multilateration We provide our GPS data and road network representation as a standard test set for other researchers to use in their map matching work

887 citations

Proceedings ArticleDOI
04 Nov 2009
TL;DR: The results show that the ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories and when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.
Abstract: Map-matching is the process of aligning a sequence of observed user positions with the road network on a digital map. It is a fundamental pre-processing step for many applications, such as moving object management, traffic flow analysis, and driving directions. In practice there exists huge amount of low-sampling-rate (e.g., one point every 2--5 minutes) GPS trajectories. Unfortunately, most current map-matching approaches only deal with high-sampling-rate (typically one point every 10--30s) GPS data, and become less effective for low-sampling-rate points as the uncertainty in data increases. In this paper, we propose a novel global map-matching algorithm called ST-Matching for low-sampling-rate GPS trajectories. ST-Matching considers (1) the spatial geometric and topological structures of the road network and (2) the temporal/speed constraints of the trajectories. Based on spatio-temporal analysis, a candidate graph is constructed from which the best matching path sequence is identified. We compare ST-Matching with the incremental algorithm and Average-Frechet-Distance (AFD) based global map-matching algorithm. The experiments are performed both on synthetic and real dataset. The results show that our ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories. Meanwhile, when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.

817 citations

Journal ArticleDOI
TL;DR: The constraints and limitations of existing map matching algorithms are uncovered by an in-depth literature review and some ideas for monitoring the integrity of map-matching algorithms are presented.
Abstract: Map-matching algorithms integrate positioning data with spatial road network data (roadway centrelines) to identify the correct link on which a vehicle is travelling and to determine the location of a vehicle on a link. A map-matching algorithm could be used as a key component to improve the performance of systems that support the navigation function of intelligent transport systems (ITS). The required horizontal positioning accuracy of such ITS applications is in the range of 1 m to 40 m (95%) with relatively stringent requirements placed on integrity (quality), continuity and system availability. A number of map-matching algorithms have been developed by researchers around the world using different techniques such as topological analysis of spatial road network data, probabilistic theory, Kalman filter, fuzzy logic, and belief theory. The performances of these algorithms have improved over the years due to the application of advanced techniques in the map matching processes and improvements in the quality of both positioning and spatial road network data. However, these algorithms are not always capable of supporting ITS applications with high required navigation performance, especially in difficult and complex environments such as dense urban areas. This suggests that research should be directed at identifying any constraints and limitations of existing map matching algorithms as a prerequisite for the formulation of algorithm improvements. The objectives of this paper are thus to uncover the constraints and limitations by an in-depth literature review and to recommend ideas to address them. This paper also highlights the potential impacts of the forthcoming European Galileo system and the European Geostationary Overlay Service (EGNOS) on the performance of map matching algorithms. Although not addressed in detail, the paper also presents some ideas for monitoring the integrity of map-matching algorithms. The map-matching algorithms considered in this paper are generic and do not assume knowledge of ‘future’ information (i.e. based on either cost or time). Clearly, such data would result in relatively simple map-matching algorithms.

799 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
78% related
Feature extraction
111.8K papers, 2.1M citations
76% related
Wireless network
122.5K papers, 2.1M citations
75% related
Wireless
133.4K papers, 1.9M citations
74% related
Network packet
159.7K papers, 2.2M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202283
202164
2020122
2019181
2018157