scispace - formally typeset
Search or ask a question
Topic

Maraging steel

About: Maraging steel is a research topic. Over the lifetime, 1728 publications have been published within this topic receiving 19886 citations. The topic is also known as: martensitic ageing steel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the phase transformations during aging in a variety of model maraging steels were investigated using Atom-probe field-ion microscopy (APFIM) techniques.
Abstract: This article describes studies of phase transformations during aging in a variety of model maraging steels. Atom-probe field-ion microscopy (APFIM) was the main research technique employed. Thermochemical calculation was also used during the course of the work. The composition and morphology of precipitates were compared in several maraging systems aged at different temperatures for different times to investigate the aging sequence. The APFIM results are compared with studies by other workers using different experimental techniques. In Fe-Ni(-Co)-Mo model alloys, ω phase and Fe7Mo6 μ phase have been found to contribute to age hardening at different stages of aging; no evidence was found for the existence of Mo-rich clusters in the as-quenched Fe-Ni-Co-Mo alloy. In a high-Si Cr-containing steel, Ti6Si7Ni16 G phase and Ni3Ti have been found to contribute to age hardening; reverted austenite was found after aging for 5 hours at 520 °C. In a Mn-containing steel, Fe2Mo Laves phase and a structurally uncertain phase with a composition of Fe45Mn32Co5Mo19 have been found to contribute to age hardening.

48 citations

Journal ArticleDOI
TL;DR: In this article, the kinetics of sustained load subcritical crack growth for 18 Ni maraging steels in high purity hydrogen are examined using crack-tip stress intensity,K, as a measure of crack driving force.
Abstract: The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high purity hydrogen are examined using crack-tip stress intensity,K, as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly definedK-independent stage (Stage II). Crack growth rates in an 18 Ni (250) maraging steel are examined for temperatures from -60°C to 100°C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 ± 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparentK th and the crack growth behavior. Comparison of results on ‘250’ and ‘300’ grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior. These phenomenological observations are discussed in terms of possible underlying controlling processes.

47 citations

Journal ArticleDOI
TL;DR: In this article, the effect of adjusting the process parameters on the microstructure and properties of maraging steel 300 parts built by selective laser melting technology has been studied, and a simple analysis of the manufacturing time as a function of the SLM parameters was also performed.
Abstract: Although selective laser melting technology (SLM) provides significant advantages over conventional manufacturing processes, it is still a relatively expensive and slow manufacturing method for high-volume production. Increasing the manufacturing speed by optimizing process parameters may increase the porosity of manufactured parts, thus degrading their mechanical properties. Here, in experimental Phase 1 of the paper, the effect of adjusting the process parameters on the microstructure and properties of maraging steel 300 parts built by SLM has been studied. The porosity, hardness, and roughness were highly dependent on the processing parameters, whereas the microstructure was not significantly affected. The SLM parameters optimized in Phase 1 were subsequently used in experimental Phase 2 for elucidating the relationships between the part position on the machine table and the final mechanical properties. The part porosity had the greatest effect on the mechanical properties. A simple analysis of the manufacturing time as a function of the SLM parameters was also performed.

47 citations

Journal ArticleDOI
25 Sep 2019
TL;DR: Mugwagwa et al. as mentioned in this paper investigated the effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of steel 300, and found that process parameters had little impact on the porosity.
Abstract: CITATION: Mugwagwa, L., Yadroitsev, I. & Matope, S. 2019. Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals, 9(10):1042, doi:10.3390/met9101042.

47 citations

Journal ArticleDOI
TL;DR: In this paper, selective laser melting (SLM) was used for manufacturing mold with conformal cooling channels and determining whether the mechanical properties development of SLM manufacturing maraging steel mold would be beneficial to improve the quality of mold.
Abstract: Purpose This paper aims to verify whether selective laser melting (SLM) could be used for manufacturing mold with conformal cooling channels and determine whether the mechanical properties development of SLM manufacturing maraging steel mold would be beneficial to improve the quality of mold. Design/methodology/approach A series of block specimens and cylindrical tensile specimens are manufactured by SLM, and then are heat treated by solution treatment (ST) and solution treatment + aging treatment (ST + AT), respectively. The development of microstructure, microhardness and tensile strength of specimens is investigated. Then, a mold with conformal cooling channels is designed and manufactured by SLM and machined after ST with microhardness decreasing. Findings The morphology of microstructure varies widely under different heat treatment. The microhardness and tensile strength decrease after ST with cellular structure broken, which is conducive to mechanical finishing for mold to improve surface accuracy. After that, the hardness and strength of the mold increase significantly by AT with the precipitation of Ni3Mo, Fe2Mo and Ni3Ti particles. The maraging steel mold with conformal cooling channels can be manufactured by SLM successfully. And the surface accuracy of mold could be improved easily by machining. Originality/value Compared with the traditional mold with simple cooling channels, the mold with conformal cooling channels can be manufactured by SLM directly. The hardness of maraging steel mold manufactured by SLM can be reduced through ST, which is conducive to mechanical finishing for overcoming the defect of low precision of SLM directly manufacturing mold. This provides a new way for manufacturing mold of high quality.

47 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
85% related
Alloy
171.8K papers, 1.7M citations
85% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Fracture mechanics
58.3K papers, 1.3M citations
80% related
Annealing (metallurgy)
74.8K papers, 1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023101
2022177
2021119
202089
201993
201874