scispace - formally typeset
Search or ask a question
Topic

Maraging steel

About: Maraging steel is a research topic. Over the lifetime, 1728 publications have been published within this topic receiving 19886 citations. The topic is also known as: martensitic ageing steel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the intrinsic microstructure of maraging steels has a poor ability to work harden and the work hardening capacity can, as expected, be improved by introducing retained austenite, but there is an associated reduction in strength.
Abstract: Maraging steels including the experimental alloy studied here show atypical stress–strain behaviour during tensile testing. In particular, there is a gradual decrease in the ability of the sample to support a stress following a small fraction of the total plastic strain to failure. It is demonstrated here that this phenomenon is not associated with the early onset of a necking instability, and that a large amount of the plastic strain beyond the peak stress is uniform. Investigations of microstructure and retained austenite content reveal that the intrinsic microstructure of maraging steels has a poor ability to work harden. The work hardening capacity can, as expected, be improved by introducing retained austenite, but there is an associated reduction in strength. Experiments have been designed to control the retained austenite content in such a way that clear comparisons can be made and conclusions reached on both the role of the austenite and of Laves phase generated at different temperatures.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of low lattice misfit and high-density of nanoscale precipitates obtained through solution treatment was adopted to obtain ultrahigh strength maraging steel without compromising elongation.
Abstract: The concept of low lattice misfit and high-density of nanoscale precipitates obtained through solution treatment was adopted to obtain ultrahigh strength maraging steel without compromising elongation. An “ultrahigh strength-high toughness” combination was successfully obtained in 19Ni3Mo1.5Ti maraging steel with ultimate strength of ~1858 MPa and static toughness of ~110 MJ m−3. Maraging steel had extremely high density (2.3 × 1024 m−3) of nanoscale precipitates with minimum lattice misfit of less than 1% at the solutionization temperature of 820 °C. Two kinds of nanoscale precipitates, namely, η-Ni3(Ti,Mo) and B2-Ni(Mo,Fe) contributed to ultrahigh strength. The size of nanoscale precipitates governed the movement of dislocations, cutting versus by-passing. Theoretical estimate of ordering and modulus contribution to strengthening suggested that ordering had a dominant influence on strength. The toughness was closely related to the characteristic evolution of nanoscale precipitates such that the high density of nanoscale precipitates contributed to increase of elastic deformation and low lattice misfit contributed to increase of uniform deformation. The nanoscale size and low lattice misfit of precipitates were the underlying reasons for the high-performance of maraging steel. Moreover, the combination of high-density of nanoscale precipitates and low lattice misfit is envisaged to facilitate the futuristic design and development of next generation of structural alloys.

44 citations

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of selective laser melting (SLM) fracture surfaces was carried out on the X3NiCoMoTi18-9-5 (or 18Ni300) maraging steel and the results revealed a highly anisotropic fatigue performance dependent on the build direction.

44 citations

Journal ArticleDOI
TL;DR: In this article, a coaxial monitoring system for selective laser melting using multiple sensors is presented, where an optical model is developed for the propagation of the process emission from the workpiece to the monitoring module to determine the field of view around the monitored zone.
Abstract: Development of monitoring devices becomes crucially important in selective laser melting due to the high process complexity and the high value of the products obtained. This work discusses the design of a coaxial monitoring system for SLM using multiple sensors. In particular, an optical model is developed for the propagation of the process emission from the workpiece to the monitoring module. The model is used to determine the field of view around the monitored zone. The lens arrangements and the optical filters are chosen according to the model results. They were implemented to construct a monitoring module consisting of two CCD cameras viewing visible and near-infrared wavelength bands, as well as a photodiode viewing the back-reflected laser emission, all integrated in a coaxial configuration. The system 1 Corresponding author information can be added as a footnote. 2 functionality is tested with a prototype SLM machine during the processing of 18Ni300 maraging steel, a material known to be prone to porosity. In particular, different remelting strategies were employed as possible correction strategies to reduce porosity. The signals were interpreted as being indicators of the change in absorptivity of the laser light by the powder bed, of the plasma and molten pool, as well as of the evolution of the temperature field.

44 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure evolution and precipitation kinetics of maraging steel C300 have been studied in the aging temperature range from 400 to 600°C, and the relation between mechanical properties and precipitation hardening response is explained, and modelling is used to optimise the properties.
Abstract: The microstructure evolution and precipitation kinetics of maraging steel C300 have been studied in the aging temperature range from 400 to 600°C. The relation between mechanical properties and precipitation hardening response is explained, and modelling is used to optimise the properties. Ultrafine needle shaped Ni3Ti phase is the main strengthening precipitate in maraging C300, and it shows very high resistance to coarsening. A spherically shaped Fe2Mo phase is formed at higher temperatures and in the overaged condition. Inter- and intralath reverted austenite nucleates at higher temperature (∼600°C). Rolling and aging treatment can produce the highest hardness by a combination of work hardening and precipitation strengthening. Microstructural evolution simulation using Monte Carlo modelling has been applied to this alloy, and the modelling has been validated by the experimental results.

43 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
85% related
Alloy
171.8K papers, 1.7M citations
85% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Fracture mechanics
58.3K papers, 1.3M citations
80% related
Annealing (metallurgy)
74.8K papers, 1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023101
2022177
2021119
202089
201993
201874