scispace - formally typeset
Search or ask a question
Topic

Marangoni effect

About: Marangoni effect is a research topic. Over the lifetime, 5336 publications have been published within this topic receiving 98562 citations. The topic is also known as: Gibbs–Marangoni effect.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a double-crucible system was used to measure surface velocities of thermal and solutal Marangoni convection in In-Ga-Sb melt.

125 citations

Patent
26 May 1995
TL;DR: In this article, a surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing.
Abstract: A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

125 citations

Journal ArticleDOI
TL;DR: This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret and design surfactant/fluid systems.
Abstract: Surfactants - molecules and particles that preferentially adsorb to fluid interfaces - play a ubiquitous role in the fluids of industry, of nature, and of life. Since most surfactants cannot be seen directly, their behavior must be inferred from their impact on observed flows, like the buoyant rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, raising the specter of confusion or even misinterpretation. This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret, and design surfactant/fluid systems. Specifically, §2 treats the equilibrium thermodynamics of surfactants at interfaces, including surface pressure, isotherms of soluble and insoluble surfactants, and surface dilatational moduli (Gibbs and Marangoni). §3 describes surfactant dynamics in fluid systems, including surfactant transport and interfacial stress boundary conditions, the competition between surface diffusion, advection, and adsorption/desorption, Marangoni stresses and flows, and surface excess rheology. §4 discusses paradigmatic problems from fluid mechanics that are impacted by surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating interfaces; capillary wave damping, thin film dynamics, foam drainage, and the dynamics of particles and probes at surfactant-laden interfaces. Finally, §5 discusses the additional richness and complexity that frequently arise in 'real' surfactants, including phase transitions, phase coexistence, and polycrystalline phases within surfactant monolayers, and their impact on non-Newtonian surface rheology.

124 citations

Journal ArticleDOI
01 Nov 1990-Langmuir
TL;DR: Marangoni drying as mentioned in this paper is a new drying process in which the substrate to be dried is withdrawn from a rinse bath (water) while at the same time nitrogen gas with a trace of an organic vapor is led along its surface.
Abstract: In a new drying process (referred to as Marangoni drying), the substrate to be dried is withdrawn from a rinse bath (water) while at the same time nitrogen gas with a trace of an organic vapor is led along its surface The organic vapor dissolves into water and introduces a surface tension gradient in the wetting film on the substrate, causing the water film to quickly drain backwards into the rinse batch (a Marangoni effect) As a result, a completely dry substrate emerges from the bath Contrary to spin drying, almost no contamination is added to the substrate surface during drying

124 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the concentration of O-2 and CO2 in the shielding gas on the weld shape was studied for the bead-on-plate TIG welding of SUS304 stainless under He-O2 and He-CO2 mixed shielding gases.
Abstract: A new type of tungsten inert gas (TIG) welding has been developed, in which an ultra-deep penetration is obtained. In order to control the Marangoni convection induced by the surface tension gradient on the molten pool, He gas containing a small amount of oxidizing gas was used. The effect of the concentration Of O-2 and CO2 in the shielding gas on the weld shape was studied for the bead-on-plate TIG welding of SUS304 stainless under He-O-2 and He-CO2 mixed shielding gases. Because oxygen is a surface active element for stainless steel, the addition of oxygen to the molten pool can control the Marangoni convection from the outward to inward direction on the liquid pool surface. When the oxygen content in the liquid pool is over a critical value, around 70ppm, the weld shape suddenly changes from a wide shallow shape to a deep narrow shape due to the change in the direction of the Marangoni convection. Also, for He-based shielding gas, a high welding current will strengthen both the inward Marangoni convection on the pool surface and the inward electromagnetic convection in the liquid pool. Accordingly, at a welding speed of 0.75 mm/s, the welding current of 160 A and the electrode gap of I mm under the He-0.4%O-2 shielding, the depth/width ratio reaches 1.8, which is much larger for Ar-O-2 shielding gas (0.7). The effects of the welding parameters, such as welding speed and welding current were also systematically investigated. In addition. a double shielding gas method has been developed to prevent any consumption of the tungsten electrode. (c) 2008 Elsevier B.V. All rights reserved.

123 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
88% related
Heat transfer
181.7K papers, 2.9M citations
84% related
Turbulence
112.1K papers, 2.7M citations
81% related
Nucleation
63.8K papers, 1.6M citations
80% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023212
2022421
2021289
2020283
2019217
2018247