scispace - formally typeset
Search or ask a question
Topic

Marangoni effect

About: Marangoni effect is a research topic. Over the lifetime, 5336 publications have been published within this topic receiving 98562 citations. The topic is also known as: Gibbs–Marangoni effect.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the self-propulsion of a single droplet in an unbounded fluid, which arises when diffusion is slow enough (i.e. beyond a critical Peclet number,.
Abstract: Active droplets swim as a result of the nonlinear advective coupling of the distribution of chemical species they consume or release with the Marangoni flows created by their non-uniform surface distribution. Most existing models focus on the self-propulsion of a single droplet in an unbounded fluid, which arises when diffusion is slow enough (i.e. beyond a critical Peclet number, .

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced.
Abstract: Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

32 citations

Journal ArticleDOI
TL;DR: periodic behaviour develops here even in the absence of any double-diffusive interplay, which in previous literature was identified as a possible source of complexity.
Abstract: A reaction–diffusion–convection (RDC) model is introduced to analyze convective dynamics around horizontally traveling fronts due to combined buoyancy- and surface tension-driven flows in vertical solution layers open to the air. This isothermal model provides a means for a comparative study of the two effects via tuning two key parameters: the solutal Rayleigh number Ra, which rules the buoyancy influence, and the solutal Marangoni number Ma governing the intensity of surface effects at the interface between the reacting solution and air. The autocatalytic front dynamics is probed by varying the relative importance of Ra and Ma and the resulting RDC patterns are quantitatively characterized through the analysis of the front mixing length and the topology of the velocity field. Steady asymptotic regimes are found when the bulk and the surface contributions to fluid motions act cooperatively i.e. when Ra and Ma have the same sign. Complex dynamics may arise when these numbers are of opposite signs and the two effects thus compete in an antagonistic configuration. Typically, spatiotemporal oscillations are observed as the control parameters are set in the region (Ra 0). Periodic behaviour develops here even in the absence of any double-diffusive interplay, which in previous literature was identified as a possible source of complexity.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the spreading of an oil drop under an atmosphere saturated with a volatile compound that could mix with the oil and observed that the usual laws for spreading were not valid any longer: the spreading was strongly accelerated and instabilities developed at the edge of the drop.

32 citations

Journal ArticleDOI
Liu Cao1
TL;DR: In this paper, the pore defect in laser powder bed fusion was investigated using the OpenFOAM software, and the authors provided theoretical guidance for the scientific regulation of pore defects in LPBF production.

32 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
88% related
Heat transfer
181.7K papers, 2.9M citations
84% related
Turbulence
112.1K papers, 2.7M citations
81% related
Nucleation
63.8K papers, 1.6M citations
80% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023212
2022421
2021289
2020283
2019217
2018247