Topic

# Markov chain

About: Markov chain is a(n) research topic. Over the lifetime, 51900 publication(s) have been published within this topic receiving 1375044 citation(s). The topic is also known as: Markov process & Markov chains.

...read more

##### Papers

More filters

••

08 Dec 2014-

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.

...read more

Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

...read more

29,410 citations

••

01 Feb 1989-

Abstract: This tutorial provides an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and gives practical details on methods of implementation of the theory along with a description of selected applications of the theory to distinct problems in speech recognition. Results from a number of original sources are combined to provide a single source of acquiring the background required to pursue further this area of research. The author first reviews the theory of discrete Markov chains and shows how the concept of hidden states, where the observation is a probabilistic function of the state, can be used effectively. The theory is illustrated with two simple examples, namely coin-tossing, and the classic balls-in-urns system. Three fundamental problems of HMMs are noted and several practical techniques for solving these problems are given. The various types of HMMs that have been studied, including ergodic as well as left-right models, are described. >

...read more

20,894 citations

•

01 Jan 1995-

TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.

...read more

Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

...read more

16,069 citations

••

Fredrik Ronquist

^{1}, Maxim Teslenko^{1}, Paul van der Mark^{2}, Daniel L. Ayres^{3}+6 more•Institutions (9)TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.

...read more

Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

...read more

14,723 citations

••

David Spiegelhalter

^{1}, Nicola G. Best^{2}, Bradley P. Carlin^{3}, Angelika van der Linde^{4}•Institutions (4)Abstract: Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.

...read more

10,825 citations