Topic

# Markov chain Monte Carlo

About: Markov chain Monte Carlo is a(n) research topic. Over the lifetime, 20187 publication(s) have been published within this topic receiving 746551 citation(s). The topic is also known as: MCMC & Markov chain Monte Carlo methods.

...read more

##### Papers

More filters

••

TL;DR: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo, and an executable is available at http://brahms.rochester.edu/software.html.

...read more

Abstract: Summary: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. Availability: MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.

...read more

19,476 citations

••

Fredrik Ronquist

^{1}, Maxim Teslenko^{1}, Paul van der Mark^{2}, Daniel L. Ayres^{3}+6 more•Institutions (9)TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.

...read more

Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

...read more

14,723 citations

••

David Spiegelhalter

^{1}, Nicola G. Best^{2}, Bradley P. Carlin^{3}, Angelika van der Linde^{4}•Institutions (4)Abstract: Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.

...read more

10,825 citations

••

TL;DR: The Markov Chain Monte Carlo Implementation Results Summary and Discussion MEDICAL MONITORING Introduction Modelling Medical Monitoring Computing Posterior Distributions Forecasting Model Criticism Illustrative Application Discussion MCMC for NONLINEAR HIERARCHICAL MODELS.

...read more

Abstract: INTRODUCING MARKOV CHAIN MONTE CARLO Introduction The Problem Markov Chain Monte Carlo Implementation Discussion HEPATITIS B: A CASE STUDY IN MCMC METHODS Introduction Hepatitis B Immunization Modelling Fitting a Model Using Gibbs Sampling Model Elaboration Conclusion MARKOV CHAIN CONCEPTS RELATED TO SAMPLING ALGORITHMS Markov Chains Rates of Convergence Estimation The Gibbs Sampler and Metropolis-Hastings Algorithm INTRODUCTION TO GENERAL STATE-SPACE MARKOV CHAIN THEORY Introduction Notation and Definitions Irreducibility, Recurrence, and Convergence Harris Recurrence Mixing Rates and Central Limit Theorems Regeneration Discussion FULL CONDITIONAL DISTRIBUTIONS Introduction Deriving Full Conditional Distributions Sampling from Full Conditional Distributions Discussion STRATEGIES FOR IMPROVING MCMC Introduction Reparameterization Random and Adaptive Direction Sampling Modifying the Stationary Distribution Methods Based on Continuous-Time Processes Discussion IMPLEMENTING MCMC Introduction Determining the Number of Iterations Software and Implementation Output Analysis Generic Metropolis Algorithms Discussion INFERENCE AND MONITORING CONVERGENCE Difficulties in Inference from Markov Chain Simulation The Risk of Undiagnosed Slow Convergence Multiple Sequences and Overdispersed Starting Points Monitoring Convergence Using Simulation Output Output Analysis for Inference Output Analysis for Improving Efficiency MODEL DETERMINATION USING SAMPLING-BASED METHODS Introduction Classical Approaches The Bayesian Perspective and the Bayes Factor Alternative Predictive Distributions How to Use Predictive Distributions Computational Issues An Example Discussion HYPOTHESIS TESTING AND MODEL SELECTION Introduction Uses of Bayes Factors Marginal Likelihood Estimation by Importance Sampling Marginal Likelihood Estimation Using Maximum Likelihood Application: How Many Components in a Mixture? Discussion Appendix: S-PLUS Code for the Laplace-Metropolis Estimator MODEL CHECKING AND MODEL IMPROVEMENT Introduction Model Checking Using Posterior Predictive Simulation Model Improvement via Expansion Example: Hierarchical Mixture Modelling of Reaction Times STOCHASTIC SEARCH VARIABLE SELECTION Introduction A Hierarchical Bayesian Model for Variable Selection Searching the Posterior by Gibbs Sampling Extensions Constructing Stock Portfolios With SSVS Discussion BAYESIAN MODEL COMPARISON VIA JUMP DIFFUSIONS Introduction Model Choice Jump-Diffusion Sampling Mixture Deconvolution Object Recognition Variable Selection Change-Point Identification Conclusions ESTIMATION AND OPTIMIZATION OF FUNCTIONS Non-Bayesian Applications of MCMC Monte Carlo Optimization Monte Carlo Likelihood Analysis Normalizing-Constant Families Missing Data Decision Theory Which Sampling Distribution? Importance Sampling Discussion STOCHASTIC EM: METHOD AND APPLICATION Introduction The EM Algorithm The Stochastic EM Algorithm Examples GENERALIZED LINEAR MIXED MODELS Introduction Generalized Linear Models (GLMs) Bayesian Estimation of GLMs Gibbs Sampling for GLMs Generalized Linear Mixed Models (GLMMs) Specification of Random-Effect Distributions Hyperpriors and the Estimation of Hyperparameters Some Examples Discussion HIERARCHICAL LONGITUDINAL MODELLING Introduction Clinical Background Model Detail and MCMC Implementation Results Summary and Discussion MEDICAL MONITORING Introduction Modelling Medical Monitoring Computing Posterior Distributions Forecasting Model Criticism Illustrative Application Discussion MCMC FOR NONLINEAR HIERARCHICAL MODELS Introduction Implementing MCMC Comparison of Strategies A Case Study from Pharmacokinetics-Pharmacodynamics Extensions and Discussion BAYESIAN MAPPING OF DISEASE Introduction Hypotheses and Notation Maximum Likelihood Estimation of Relative Risks Hierarchical Bayesian Model of Relative Risks Empirical Bayes Estimation of Relative Risks Fully Bayesian Estimation of Relative Risks Discussion MCMC IN IMAGE ANALYSIS Introduction The Relevance of MCMC to Image Analysis Image Models at Different Levels Methodological Innovations in MCMC Stimulated by Imaging Discussion MEASUREMENT ERROR Introduction Conditional-Independence Modelling Illustrative examples Discussion GIBBS SAMPLING METHODS IN GENETICS Introduction Standard Methods in Genetics Gibbs Sampling Approaches MCMC Maximum Likelihood Application to a Family Study of Breast Cancer Conclusions MIXTURES OF DISTRIBUTIONS: INFERENCE AND ESTIMATION Introduction The Missing Data Structure Gibbs Sampling Implementation Convergence of the Algorithm Testing for Mixtures Infinite Mixtures and Other Extensions AN ARCHAEOLOGICAL EXAMPLE: RADIOCARBON DATING Introduction Background to Radiocarbon Dating Archaeological Problems and Questions Illustrative Examples Discussion Index

...read more

7,284 citations

••

Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

...read more

6,914 citations